薄膜太阳电池研究进展和挑战
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress and Challenges of Thin Film Solar Cells
  • 作者:张传军 ; 褚君浩
  • 英文作者:ZHANG Chuanjun;CHU Junhao;State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, CAS;China Energy Investment Corporation;
  • 关键词:薄膜太阳电池 ; 光电转换 ; 非晶硅 ; 碲化镉 ; 铜铟镓硒 ; 金属卤化物钙钛矿
  • 英文关键词:thin film solar cells;;photoelectric conversion;;a-Si;;CdTe;;CIGS;;PSC
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:中国科学院上海技术物理研究所红外物理国家重点实验室;国家能源投资集团有限责任公司;
  • 出版日期:2019-05-05
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.620
  • 语种:中文;
  • 页:ZGDC201909002
  • 页数:8
  • CN:09
  • ISSN:11-2107/TM
  • 分类号:13-20
摘要
近十几年来,由于一系列新材料、新结构和新工艺的引入,传统薄膜太阳电池技术,如非晶硅(a-Si)、碲化镉(Cd Te)、铜铟镓硒(CIGS)都得到显著的提高,一些新兴薄膜太阳电池技术,如金属卤化物钙钛矿(metalhalide perovskite,PSC)、铜锌硒硫(CZTS)、硒化锑(Sb_2Se_3)也得到快速发展。其中CdTe、CIGS、PSC薄膜太阳电池的转换效率都大于22%。CdTe、CIGS薄膜太阳电池的产业化和规模应用也取得了很大的进展。薄膜太阳电池技术经过这十几年的研究,厚积薄发,为今后的进一步发展打下了更加坚实的基础。文中选取a-Si、CdTe、CIGS、PSC薄膜太阳电池的主要技术进展、发展趋势、产业化现状和面临的挑战进行论述。
        In recent years, due to the introduction of a series of new materials, new structures and new technologies,the traditional solar cell technologies of a-Si, CdTe, and CIGS have been improved significantly, and some emerging thin film solar cell technologies of PSC, CZTS, Sb_2 Se_3 have also been rapidly developed. To its credit that the power conversion efficiency of CdTe, CIGS and PSC thin film solar cell is greater than 22%. The great progress has also been made in the industrialization and scale application of CdTe and CIGS thin film solar cells. After more than ten years of research, thin film solar cell technologies have laid a solid foundation for further development. In this paper, the main technical progress,development trend, industrialization status and challenges of a-Si, CdTe, and CIGS and PSC thin film solar cells were reviewed.
引文
[1]First Solar Press Release.First solar achieves yet another cell conversion efficiency world record[Z].Nasdaq:First Solar Press,2016.
    [2]Wu J L,Hirai Y,Kato T,et al.New world Record efficiency up to 22.9%for Cu(In,Ga)(Se,S)2 thin-film solar cell[C]//Proceedings of the 7th World Conference on Photovoltaic Energy Conversion.Waikoloa,HI,USA,2018.
    [3]Yang W S,Noh J H,Jeon N J,et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J].Science,2015,348(6240):1234-1237.
    [4]Wen Xixing,Chen Chao,Lu Shuaicheng,et al.Vapor transport deposition of antimony selenide thin film solar cells with 7.6%efficiency[J].Nature Communications,2018,9(1):2179
    [5]Yan Chang,Huang Jialiang,Sun Kaiwen,et al.Cu2ZnSnS4 solar cells with over 10%power conversion efficiency enabled by heterojunction heat treatment[J].Nature Energy,2018,3(9):764-772.
    [6]Matsui T,Bidiville A,Maejima K,et al.High-efficiency amorphous silicon solar cells:impact of deposition rate on metastability[J].Applied Physics Letters,2015,106(5):053901.
    [7]Sai H,Maejima K,Matsui T,et al.High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition[J].Japanese Journal of Applied Physics,2015,54(8S1):08KB05.
    [8]Cashmore J S,Apolloni M,Braga A,et al.Improved conversion efficiencies of thin-film silicon tandem(MICROMORPH?)photovoltaic modules[J].Solar Energy Materials and Solar Cells,2016,144:84-95.
    [9]Ai Dao V,Kim S,Lee Y,et al.High-efficiency heterojunction with intrinsic thin-layer solar cells:a review[J].Current Photovoltaic Research,2013,1(2):73-81.
    [10]Matsui T,Bidiville A,Maejima K,et al.High-efficiency amorphous silicon solar cells:impact of deposition rate on metastability[J].Applied Physics Letters,2015,106(5):053901.
    [11]Sai H,Matsui T,Koida T,et al.Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%[J].Applied Physics Letters,2015,106(21):213902.
    [12]Bonnet D,Rabenhorst H.New results on the development of a thin film p-CdTe/n-CdS heterojunction solar cell[C]//Proceedings of the 9th Photovoltaic Specialists Conference.Freiburg,1972.
    [13]Britt J,Ferekides C.Thin-film CdS/CdTe solar cell with15.8%efficiency[J].Applied Physics Letters,1993,62(22):2851-2852.
    [14]Wu X,Yan Y,Dhere R G,et al.Nanostructured CdS:O film:preparation,properties,and application[J].Physica Status Solidi(C),2004,1(4):1062-1066.
    [15]Kephart J M,McCamy J W,Ma Z,et al.Band alignment of front contact layers for high-efficiency CdTe solar cells[J].Solar Energy Materials and Solar Cells,2016,157:266-275.
    [16]Munshi A H,Kephart J M,Abbas A,et al.Polycrystalline CdTe photovoltaics with efficiency over 18%through improved absorber passivation and current collection[J].Solar Energy Materials and Solar Cells,2018,176:9-18.
    [17]Swanson D E,Sites J R,Sampath W S.Co-sublimation of CdSexTe1-x layers for CdTe solar cells[J].Solar Energy Materials and Solar Cells,2017,159:389-394.
    [18]Poplawsky J D,Wei Guo,Paudel N,et al.Structural and compositional dependence of the CdTexSe1-x alloy layer photoactivity in CdTe-based solar cells[J].Nature Communications,2016,7:12537.
    [19]Mitchell K W,Eberspacher C,Cohen F,et al.Progress towards high efficiency thin film CdTe solar cells[J].Solar Cells,1988,23(1-2):49-57.
    [20]Burst J M,Duenow J N,Albin D S,et al.CdTe solar cells with open-circuit voltage breaking the 1 V barrier[J].Nature Energy,2016,1(3):16015.
    [21]Becker J J,Boccard M,Campbell C M,et al.Loss analysis of monocrystalline CdTe solar cells with 20%active-area efficiency[J].IEEE Journal of Photovoltaics,2017,7(3):900-905.
    [22]Kazmerski L L,White F R,Morgan G K.Thin-film Cu In Se2/CdS heterojunction solar cells[J].Applied Physics Letters,1976,29(4):268-270.
    [23]Mickelsen R A,Chen W S.Development of a 9.4%efficient thin-film CuInSe2/CdS solar cell[C]//Proceedings of the 15th IEEE Photovoltaic Specialists Conference.New York,USA:IEEE,1981.
    [24]Mitchell R A,Eberspacher C,Ermer J,et al.Single and tandem junction CuInSe2 cell and module technology[C]//Proceedings of the 20th IEEE Photovoltaic Specialists Conference.Las Vegas,NV,USA:IEEE,1988.
    [25]Gabor A M,Tuttle J R,Albin D S,et al.High-efficiency CuInxGa1-xSe2 solar cells made from(InxGa1-x)2Se3precursor films[J].Applied Physics Letters,1994,65(2):198-200.
    [26]Jackson P,Hariskos D,Lotter E,et al.New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond20%[J].Progress in Photovoltaics:Research and Applications,2011,19(7):894-897.
    [27]Hall M.EMPA announces 20.4%efficient thin film CIGS-on-polymer cell[J].PV Magazine,2013.
    [28]Tai K F,Kamada R,Yagioka T,et al.From 20.9 to 22.3%Cu(In,Ga)(S,Se)2 solar cell:reduced recombination rate at the heterojunction and the depletion region due to K-treatment[J].Japanese Journal of Applied Physics,2017,56(8S2):08MC03.
    [29]Solar Frontier.Solar frontier achieves world record thin-film solar cell efficiency of 22.9%[EB/OL].Tokyo:Solar Frontier,2017[2019-04-10].http://www.solarfrontier.com/eng/news/2017/1220_press.html.
    [30]Marudachalam M,Birkmire R W,Hichri H,et al.Phases,morphology,and diffusion in CuInxGa1-xSe2 thin films[J].Journal of Applied Physics,1997,82(6):2896-2905.
    [31]Kato T.Cu(In,Ga)(Se,S)2 solar cell research in solar frontier:progress and current status[J].Japanese Journal of Applied Physics,2017,156(4S):04CA02.
    [32]Chantana J,Kato T,Sugimoto H,et al.20%Efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/Cu(In,Ga)(S,Se)2 Solar cell prepared by all-dry process through a combination of heat-light-soaking and light-soaking processes[J].ACSApplied Materials&Interfaces,2018,10(13):11361-11368.
    [33]Solar Frontier.Solar frontier achieves world record thin-film solar cell efficiency of 23.35%[EB/OL].Tokyo:Solar Frontier,2019[2019-04-10].http://www.solarfrontier.com/eng/news/2019/0117_press.html.
    [34]Park N G.Perovskite solar cells:an emerging photovoltaic technology[J].Materials Today,2015,18(2):65-72.
    [35]Hodes G.Perovskite-based solar cells[J].Science,2013,342(6156):317-318.
    [36]Seok S I,Gr?tzel M,Park N G.Methodologies toward highly efficient perovskite solar cells[J].Small,2018,14(20):1704177.
    [37]Kojima A,Teshima K,Shirai Y,et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050-6051.
    [38]Lee M M,Teuscher J,Miyasaka T,et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643-647.
    [39]Brennan M C,Draguta S,Kamat P V,et al.Light-induced anion phase segregation in mixed halide perovskites[J].ACS Energy Letters,2018,3(1):204-213.
    [40]Abate A.Perovskite solar cells go lead free[J].Joule,2017,1(4):659-664.
    [41]Ibn-Mohammed T,Koh S C L,Reaney I M,et al.Perovskite solar cells:an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies[J].Renewable and Sustainable Energy Reviews,2017,80:1321-1344.
    [42]Yang Zhichun,Zhang Shasha,Li Lingbo,et al.Research progress on large-area perovskite thin films and solar modules[J].Journal of Materiomics,2017,3(4):231-244.
    [43]Coutts T J,Emery K A,Ward J S.Modeled performance of polycrystalline thin-film tandem solar cells[J].Progress in Photovoltaics:Research and Appllcations,2002,10(3):195-203.
    [44]Powalla M,Paetel S,Ahlswede E,et al.Thin-film solar cells exceeding 22%solar cell efficiency:an overview on CdTe-,Cu(In,Ga)Se2,and perovskite-based materials[J].Applied Physics Reviews,2018,5(4):041602.
    [45]Anaya M,Lozano G,Calvo M E,et al.ABX3 perovskites for tandem solar cells[J].Joule,2017,1(4):769-793.
    [46]Rajagopal A,Yang Zhibin,Jo S B,et al.Highly efficient perovskite-perovskite tandem solar cells reaching 80%of the theoretical limit in photovoltage[J].Advanced Material,2017,29(34):1702140.
    [47]Sahli F,Werner J,Kamino B A,et al.Fully textured monolithic perovskite/silicon tandem solar cells with25.2%power conversion efficiency[J].Nature Materials,2018,17(9):820-826.
    [48]Oxford PV.Oxford PV perovskite solar cell achieves 28%efficiency[EB/OL].Oxford OX5 1QU,United Kingdom:Oxford PV,2018[2019-04-10].https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-eff iciency.
    [49]Han Qifeng,Hsieh Y T,Meng Lei,et al.Highperformance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells[J].Science,2018,361(6045):904-908.
    [50]ZSW.Perovskite/CIGS tandem cell with record efficiency of 24.6 percent paves the way for flexible solar cells and high-efficiency building-integrated PV[EB/OL].BadenWürttemberg,Germany:ZSW,2018[2019-04-10].https://www.zsw-bw.de/en/newsroom/news/news-detail/news/de tail/News/thin-film-tandem-solar-cell.html.
    [51]Green M A,Hishikawa Y,Dunlop E D,et al.Solar cell efficiency tables(version 52)[J].Progress in Photovoltaics:Research and Applications,2018,26(7):427-436.
    [52]First Solar,Inc.First Solar Series 6?next generation thin film solar technology[EB/OL].Tempe,Arizona,USA:First Solar,2018[2019-04-10].http://www.firstsolar.com/-/media/First-Solar/Technical-Documents/Series-6-Datasheets/Series-6-Datasheet.ashx.
    [53]Sugimoto H.High efficiency and large volume production of CIS-based modules[C]//Proceedings of the IEEE 40th Photovoltaic Specialist Conference.Denver,CO,USA:IEEE,2014.
    [54]Solar Frontier.Solar frontier’s CIS thin-film submodule achieves highest efficiency world record of 19.2%[EB/OL].Tokyo:Solar Frontier,2017[2019-04-10].http://www.solar-frontier.com/eng/news/2017/0227_press.html.
    [55]ZSW.Efficiency of CIGS thin-film solar cells[EB/OL].Baden-Württemberg,Germany:ZSW,2016[2019-04-10].https://www.zsw-bw.de/en/research/photo voltaics/topics/thin-film-solar-cells-and-modules.html#c518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700