磷对节节草铜富集性和转运能力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Phosphorus on Cu Accumulation and Translocation in Hippochaete Ramosissimum
  • 作者:彭珊珊 ; 俞茜 ; 罗芳 ; 李影
  • 英文作者:PENG Shan-shan;YU Xi;LUO Fang;LI Ying;College of Life Sciences,Anhui Normal University;
  • 关键词:节节草 ; ; ; 富集
  • 英文关键词:Hippochaete ramosissimum;;phosphorus;;copper;;accumulation
  • 中文刊名:AHSZ
  • 英文刊名:Journal of Anhui Normal University(Natural Science)
  • 机构:安徽师范大学生命科学学院;
  • 出版日期:2019-03-15
  • 出版单位:安徽师范大学学报(自然科学版)
  • 年:2019
  • 期:v.42;No.175
  • 基金:安徽省高校省级自然科学研究基金重点项目(KJ2012A132);; 安徽省高校生物环境与生态安全省级重点实验室基金;; 安徽省重要生物资源保护与利用研究省级重点实验室基金
  • 语种:中文;
  • 页:AHSZ201902008
  • 页数:5
  • CN:02
  • ISSN:34-1064/N
  • 分类号:48-52
摘要
通过溶液培养试验,探讨了不同供磷水平下节节草(Hippochaete ramosissimum)对铜的富集特性和转运能力的变化。结果表明,低浓度的磷(≤0.5mmol·L~(-1))处理下,节节草地上部分、地下茎和根的生物量均有一定程度的增加,但在高浓度磷(≥2.0mmol·L~(-1))处理下,其生长均受到一定的抑制。在铜胁迫和非铜胁迫下适当的供磷可有效地提高节节草对铜的吸收和积累能力。尤其当磷低于0.5mmol·L~(-1)(T1、T4)时,节节草地上部分和根部的铜含量分别是其对照组的3.38、1.49倍和1.57、1.19倍,而此时其地下茎的铜含量明显下降,仅为其对照的50%左右,这表明供磷水平较低(≤0.5mmol·L~(-1))有利于节节草吸收铜离子以及将地下茎的铜离子向地上部转运,且其转运系数随磷浓度的提高而呈上升趋势。而当高浓度磷处理时(≥2.0mmol·L~(-1)),节节草对铜的吸收和转运能力受到了明显的抑制。试验结果表明,适当增施磷肥有利于提高节节草的生物量,促进铜向其地上部转运,有效提高节节草地上部分铜的积累量,这可能会增加其对铜污染土壤的修复能力。
        In this paper,the effects of different levels of phosphorus supply on copper enrichment and transport capacity of Hippochaete ramosissimum are studied by solution culture experiment.The results show that the biomass of aboveground part,underground stem and root of H.ramosissimum increas to a certain extent under low phosphorus concentration(≤0.5 mmol·L~(-1)),but their growths are inhibited under high phosphorus concentration(≥2.0 mmol·L~(-1)).In addition,appropriate phosphorus addition can promote copper accumulation in various parts of H.ramosissimum under copper stress and non-copper stress.Especially when P≤0.5 mmol·L~(-1)(T1,T4),the copper content in aboveground parts and roots of plants is 3.38,1.49 and 1.57,1.19 times higher than that of the control group,while the copper content in underground stems decreases significantly,which is only about 50% of the control group.The findings indicate that low phosphorus supply(≤0.5 mmol·L~(-1))is conducive to the uptake of copper and the transport of copper from rhizome to shoot of H.ramosissimum,and its transport coefficient increases with phosphorus concentration.However,when the phosphorus concentration is high(≥2.0 mmol·L~(-1)),the absorption and transport capacity of copper is significantly inhibited.The results suggest that proper application of phosphorus fertilizer can improve the biomass of H.ramosissimum,promote the transport of copper to its aboveground parts,and effectively increase the accumulation of copper in its aboveground parts,thus leading to increase the possibility of this plant to remediate the copper-contaminated soil.
引文
[1] 陈怀满.环境土壤学[M].北京:科学出版社,2005:3-12,167-196.
    [2] MENG W,QIN Y W,ZHENG B H,et al.Heavy metal pollution in Tianjing Bohai Bay,China [J].Journal of Environmental Sciences,2008,20(7):814-819.
    [3] 廖晓勇,陈同斌,阎秀兰,等.提高植物修复技术、途径与强化措施[J].环境科学学报,2007,27(6):881-893.
    [4] 陈同斌,范稚莲,雷梅,等.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义[J].科学通报,2002,47(15):1156-1159.
    [5] ZHANG S,CHEN M,LI T,et al.A newly found cadmium accumulator—Malva sinensis,Cavan[J].Journal of Hazardous Materials,2010,173(1-3):705-709.
    [6] FIRDAUS-e-BAREEN,TAHIRA S A.Efficiency of seven different cultivated plant species for phytoextraction of toxic metals from tannery effluent contaminated soil using EDTA[J].Soil & Sediment Contamination,2010,19(2):160-173.
    [7] AHEMAD M.Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils:a review [J].Biotech,2015,5(2):111-121.
    [8] 熊璇,唐浩,黄沈发,等.重金属污染土壤植物修复强化技术研究进展[J].环境科学技术,2012,(S1):185-193.
    [9] 李敏,滕泽栋,朱静,等.解磷微生物修复土壤重金属污染研究进展[J].生态学报,2018,38(10):3393-3402.
    [10] 黄化刚,李廷强,朱治强,等.可溶性磷肥对重金属复合污染土壤东南景天提取锌/镉及其养分积累的影响[J].植物营养与肥料学报,2012,18(2):382-389.
    [11] 孙叶芳,邢海,吴卫红,等.磷肥对铅锌矿区土壤—白菜中重金属积累的阻控[J].浙江大学学报(农业与生命科学版),2017,43(6):787-796.
    [12] 李玉,方文,祁光霞,等.污泥富磷堆肥前后重金属赋存形态及释放能力变化[J].环境科学,2018,39(6):2786-2793.
    [13] 李影,储玲,王友保.铜处理下节节草耐性机制的探讨[J].生物学杂志,2010,6(27):37-41.
    [14] 李影,刘鹏.Cd胁迫对3种蕨类植物生理代谢及镉累积特性的影响[J].水土保持学报,2016,30(3):128-133.
    [15] 李影,褚磊.节节草对Cu的吸收和积累[J].生态学报,2008,28(4):1565-1572.
    [16] 鲍士旦.土壤农化分析[M].2版.北京:中国农业出版社,2000:70-97.
    [17] 中科院南京土壤所.土壤理化分析[M].上海:上海科学技术出版社,1978:350-360.
    [18] 潘瑞炽.植物生理学[M].7版.北京:高等教育出版社,2012:34-65.
    [19] JANG X F,WANG C H,ZHAO K F.Study on the mechanism of cadmium resistance in Phragmites australis [J].Acta Ecologica Sinica,2003,23(5):856-862.
    [20] BANI A,PAVLOVA D,ECHEVARRIA G,et al.Nickel hyperaccumulation by the species of Alyssum and Thlaspi(Brassicaceae)from the ultramafic soils of the Balka [J].Botanica Serbica,2010,34(1):3-14.
    [21] 廖晓勇,陈同斌,谢华,等.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究[J].环境科学学报,2004,24(3):455-462.
    [22] 陈世宝,朱永官,杨俊诚.土壤—植物系统中磷对重金属生物有效性的影响机制[J].环境污染治理技术与设备,2003,4(8):1-7.
    [23] 俞花美,焦鹏,葛成军,等.施肥措施对重金属污染土壤—植物系统影响的研究进展[J].热带农业科学,2012,32(2):61-66.
    [24] 孙琴,倪吾钟,杨肖娥,等.磷对超积累植物——东南景天生长和积累锌的影响[J].环境科学学报,2003,23(6):818-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700