熔融制样-X射线荧光光谱法测定镜铁矿中主次成分
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of Primary and Secondary Components in Specific Iron by Melting Sampling and X-Ray Fluorescence Spectroscopy
  • 作者:赵毅华
  • 英文作者:ZHAO Yi-hua;Hanzhong Laboratory, Northwest Geological Exploration Institute, General Administration of Metallurgical Geology;
  • 关键词:镜铁矿石 ; 熔融制样 ; X射线荧光光谱 ; 主次成分
  • 英文关键词:specularite;;melting sample preparation;;X-ray fluorescence spectroscopy;;primary and secondary components
  • 中文刊名:FXCQ
  • 英文刊名:Analysis and Testing Technology and Instruments
  • 机构:中国冶金地质总局西北地质勘查院汉中实验室;
  • 出版日期:2019-03-30
  • 出版单位:分析测试技术与仪器
  • 年:2019
  • 期:v.25;No.107
  • 语种:中文;
  • 页:FXCQ201901011
  • 页数:6
  • CN:01
  • ISSN:62-1123/O6
  • 分类号:37-42
摘要
以Li_2B_4O_7和LiBO_4[m(Li_2B_4O_7)∶m(LiBO_4)=67∶33]为熔剂,采用1∶25熔剂稀释比,于1 120℃将镜铁矿试样熔融制成玻璃熔片,X射线荧光光谱分析仪对熔片中Fe、Mn、Ti、Ca、Ba、Al、Mg、K、Na和P等元素进行同时测定.由于样品采用大的熔剂稀释比进行高温熔融,有效提高了K、Na等元素的X射线荧光强度,消除了复杂矿物结构效应,降低共存元素间基体效应影响,提高了分析结果的准确度和精密度.方法用于铁矿石标样分析,各组分的测定值与标准值相符.
        Li_2B_4O_7 and LiBO_4 [m(Li_2B_4O_7)∶m(LiBO_4)=67∶33] were used as fluxes, and the specularite samples were melted into glass fuses at 1 120 ℃ with a 1∶25 flux dilution ratio. Fe, Mn, Ti, Ca, Ba, Al, Mg, K, Na and P in the fuses were determined simultaneously on an X-ray fluorescence spectrometer. Since the sample was melted at high temperature with a large flux dilution ratio, the X-ray fluorescence intensities of K, Na and other elements were effectively enhanced, with the complex mineral structural effect eliminated, and the matrix effect between coexisting elements reduced, so the accuracy and precision of the analysis results were improved. The method has been applied to the analysis of iron ore standard samples. The measured values of each component were in accordance with the standard values.
引文
[1] 冶金工业部信息标准研究院原材料室,中国标准出版社第二编辑室.黑色冶金工业标准汇编:矿产品原料及其实验方法[M].北京:中国标准出版社,1995.
    [2] 许祥红、王桂群、刘洪青,等.电感祸合等离子体原子发射光谱法测定铁矿石中Si、 Ca、 Mg、 Al、P、 V、Ti [J].冶金分析, 2006, 26(2): 89- 90.[ XU Xiang-hong, WANG Gui-qun, LIU Hong-qing, et al. Determination of Si, Ca, Mg, Al, P, V, Ti in iron ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical analysis, 2006, 26 (2): 89-90.]
    [3] 胡述戈.微波消解电感祸合等离子体原子发射光谱法测定铁矿石中8种成分[J].冶金分析, 2006, 26(6):40-43.[HU Shu-ge. Inductively coupled plasma atomic emission spectrometry with microwave digestion for the determination of eight components in iron ores[J]. Metallurgical Analysis, 2006, 26 (6): 40-43.]
    [4] 马景治,贾海峰,兰绿灯,等. X-射线荧光光谱法测定硅石主次元素组分[J].中国无机分析化学,2017,7(2):55-58.[MA Jing-zhi, JIA Hai-feng, LAN Green-lantern, et al. X-ray fluorescence spectrometry for the determination of major and minor elements in silica [J]. China Inorganic Analytical Chemistry, 2017, 7 (2): 55-58.]
    [5] 李小青. 熔融制样-X射线荧光光谱法测定锰铁和金属锰中锰硅磷[J].冶金分析, 2018,38(6): 39-42.[LI Xiao-qing. Determination of manganese, silicon and phosphorus in ferromanganese and metallic manganese by fusion sampling-X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2018, 38 (6): 39-42.]
    [6] 曾美云, 邹棣华, 李小丹,等.X-射线荧光光谱法测定以镍和钴为主的多金属矿中主次成分[J].冶金分析, 2018, 38(4): 51-56.[ZENG Mei-yun, ZOU Di-hua, LI Xiao-dan, et al. X-ray fluorescence spectrometry for the determination of major and minor components in polymetallic ores dominated by nickel and cobalt[J]. Metallurgical Analysis, 2018, 38 (4): 51-56.]
    [7] 夏传波, 成学海, 张会堂, 等. 熔融制样-X射线荧光光谱法测定电气石中12种主次量元素[J]. 岩矿测试, 2018, 37(1): 36-42.[XIA Chuan-bo, CHENG Xue-hai, ZHANG Hui-tang, et al. Determination of 12 major and minor elements in tourmaline by melt sampling-X-ray fluorescence spectrometry[J]. Rock and Mineral Testing, 2018, 37 (1): 36-42.]
    [8] 周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305.[ZHOU Wei, ZENG Meng, WANG Jian, et al. Determination of major and rare earth elements in rare earth ores by melt sampling-X-ray fluorescence spectrometry[J]. Rock and Mineral Testing, 2018, 37 (3): 298-305.]
    [9] 李可及. 熔融制样X-射线荧光光谱法测定岩盐中的主量成分[J]. 岩矿测试, 2016, 35(3): 290-294.[LI Ke-ji. X-ray fluorescence spectrometric determination of major components in rock salt by melting sample preparation[J]. Rock and Mineral Testing, 2016, 35 (3): 290-294.]
    [10] 钟坚海. 熔融制样 X-射线荧光光谱法测定铝矿15种组分[J].冶金分析, 2018, 38(11): 24- 29.[ZHONG Jian-hai. X-ray fluorescence spectrometric determination of 15 components in bauxite by melting sample preparation[J].Metallurgical Analysis,2018,38(11):24-29.]
    [11] 张飘飞. X-射线荧光光谱法测定铁矿石中各组分[J].冶金分析, 2003.23(3):53-54.[ZHANG Piao-fei. X-ray fluorescence spectrometry for the determination of various components in iron ore[J].Metallurgical Analysis, 2003.23(3): 53-54.]
    [12] 林忠,蒋晓光,李卫刚,等.波长色散x射线荧光光谱法测定铁矿石中铁硅镁铝磷锰钦[J].理化检验:化学分册,2003, 39(4):207-208. [LING Zhong, JIANG Xiao-guang, LI Wei-gang, et al. XRFS Determination of Fe Si Ca Al P Mg Mn and Ti in iron ores[J]. Physical Testing and Chemical Analysis: PartB Chemical Analysis, 2003, 39(4):207-208.]
    [13] 高文红,王文生,陈学琴,等. X荧光玻璃熔片法分析铁矿石[J].山东冶金, 2000 22(2): 48- 49.[GAO Wen-hong, WANG Wen-sheng, CHEN Xue-qin, et al. X-ray fluorescence glass smear method for iron ore analysis[J]. Shandong Metallurgy, 2000 22 (2): 48-49.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700