冷轧制备碳纤维-铝合金层板及其弯曲力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Flexural Mechanics Properties of Carbon Fiber-Aluminum Laminates by Cold Rolling
  • 作者:王健 ; 张亮亮 ; 于跃 ; 付昌云
  • 英文作者:WANG Jian;ZHANG Liangliang;YU Yue;FU Changyun;National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,Yanshan University;
  • 关键词:轧制 ; 层板 ; 压下量 ; 力学性能 ; 表面处理
  • 英文关键词:rolling;;laminate;;reduction;;mechanics property;;surface treatment
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:燕山大学国家冷轧板带装备及工艺工程技术研究中心;
  • 出版日期:2019-04-23 10:20
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.512
  • 基金:留学人员科技活动择优资助项目(CG2016003001);; 汽车车身先进设计制造国家重点实验室开放基金资助项目(31815009)
  • 语种:中文;
  • 页:ZGJX201908018
  • 页数:8
  • CN:08
  • ISSN:42-1294/TH
  • 分类号:116-123
摘要
为研究铝合金/碳纤维预浸料轧制制备层板的可行性及力学性能,基于铝板不同表面处理工艺和轧制压下量,制备了碳纤维增强铝合金层板。结合三点弯曲试验分析了表面处理工艺和压下量对层板弯曲力学性能的影响。结果表明:铝合金表面处理工艺和轧制压下量对层板力学性能影响显著,经阳极氧化工艺处理后所得层板弯曲性能改善最为明显,弯曲强度和模量分别为573 MPa和80.9 GPa,相比表面未处理试样分别增加了65.9%和39.1%,界面结合性能明显优于化学清洗法和机械打磨法,层板破坏形式由纤维整体断裂和分层失效转变为纤维屈曲变形;当压下量为6.5%时,铝合金/纤维树脂界面整洁平齐,层板弯曲性能最优,表明适当的轧制压力有利于树脂流动浸润纤维,压实层间孔隙,促进树脂与铝合金表面形成稳定的机械咬合结构。
        In order to study the feasibility and mechanics properties of the aluminum alloy/carbon fiber prepreg laminates by rolling processes, they were prepared based on different surface treatments of the aluminum sheets and rolling reductions, the effects of the surface treatment processes and reduction on the flexural mechanics properties of the laminates were analyzed by the three point bending tests. The results show that the surface treatment processes and the reductions have significant influences on the mechanics properties of the laminates. The bending performance of the laminatesis improved significantly by the anodizing processes, the flexural strength is as 573 MPa and the modulus is as 80.9 GPa, compared with the surface untreated samples they increase by 65.9% and 39.1% respectively, the interfacial bonding performance is obviously better than that of chemical cleaning and mechanical grinding processes. The failure mode of the laminates transformed the fiber integral fracture and the lamination into the fiber buckling deformation. When the reduction isas 6.5%, the interface of the aluminum alloy/fiber resin is neat and smooth, and the flexural performance of the laminates is optimal, It is indicated that the appropriate rolling pressure is beneficial to the resin flow infiltrating fiber, compacting interlayer porosity, and conducive to form a stable mechanical occlusal structure on the surface of the resin and aluminum alloy.
引文
[1] 郑兴伟,何雪婷,刘红兵,等.纤维铝合金层板的研究进展[J].材料导报,2013,27(s1):347-350.ZHENG Xingwei,HE Xueting,LIU Hongbing,et al.Research Progress of Fiber Aluminum Alloy Laminate[J].Materials Review,2013,27(s1):347-350.
    [2] SINMAZ?ELIK T,AVCU E,BORA M ?,et al.A Review:Fibre Metal Laminates,Background,Bonding Types and Applied Test Methods[J].Materials & Design,2011,32(7):3671-3685.
    [3] VLOT A,GUNNINK J W.Fibre Metal Laminates:an Introduction[M].Amsterdam:Kluwer Academic Publishers,2001:1-5.
    [4] 贾新强,郎利辉.纤维金属层板制备成形的研究现状及发展趋势[J].精密成形工程,2017,9(2):1-6.JIA Xinqiang,LANG Lihui.Research Status and Development Trend of Fabrication of Fiber and Metal Laminates[J].Netshape Forming Engineering,2017,9(2):.Impact Damage Growth in Carbon Fibre Aluminium Laminates[J].Composite Structures,2017,172:147-154.
    [6] HU Y B,LI H G,CAI L,et al.Preparation and Properties of Fibre-metal Laminates Based on Carbon Fibre Reinforced PMR Polyimide[J].Composites Part B Engineering,2015,69:587-591.
    [7] DADEJ K,BIENIA.Residual Fatigue Life of Carbon Fibre Aluminium Laminates[J].International Journal of Fatigue,2017,100:94-104.
    [8] 何泽华.我国轧制方法生产层状金属复合材料的研究现状[J].大众科技,2016(4):59-62.HE Zehua.Research Status of Layered Metal Composite Produced by Rolling Method in China[J].Popular Technology,2016(4):59-62.
    [9] 王旭东,张迎晖,徐高磊.轧制法制备金属层状复合材料的研究与应用[J].铝加工,2008(3):22-25.WANG Xudong,ZHANG Yinghui,XU Gaolei.Research and Application of Metal Layer Composite Prepared by Rolling Method[J].Aluminum Processing,2008(3):22-25.
    [10] 杨喆.金属表面硅烷化处理应用的研究[J].科技展望,2016,26(1):61.YANG Zhe.Study on the Application of Silane Treatment on Metal Surface[J].Science and Technology,2016,26(1):61.
    [11] 张小平,秦建平.轧制理论[M].北京:冶金工业出版社,2006:136-141.ZHANG Xiaoping,QIN Jianping.Rolling Theory[M].Beijing:Metallurgical Industry Press,2006:136-141.
    [12] 中国国家标准化管理委员会.HB 7617-1998纤维增强金属基复合材料层板弯曲性能试验方法[S].北京:中国标准出版社,1998.China National Standardization Management Committee.HB 7617-1998 Test Method for Flexural Properties of Fiber Reinforced Metal Matrix Composite Laminates [S].Beijing:China Standard Press,1998.
    [13] 翟豹,王树彬,张博明,等.阳极氧化工艺对纤维-铝合金层板力学性能的影响[J].复合材料学报,2013,30(3):154-159.ZHAI Bao,WANG Shubin,ZHANG Boming,et al.Effect of Anodizing Process on Mechanical Properties of Fiber-Aluminum Alloy[J].Acta Materiae Compositae Sinica,2013,30(3):154-159.
    [14] LI X,ZHANG X,ZHANG H,et al.Mechanical Behaviors of Ti/CFRP/Ti Laminates with Different Surface Treatments of Titanium Sheets[J].Composite Structures,2017,163:21-31.
    [15] NING H,IIJIMA T,NING H,et al.Investigation on Mode -Ⅱ Interface Fracture Toughness of CFRP/Al Laminates Toughened by VGCF Interleaves[J].Journal of Materials Science,2015,50(4):1915-1923.
    [16] 李文娟.纤维增强树脂-铝合金叠层复合材料及其成型基础研究[D].重庆:重庆大学,2013:1-12.LI Wenjuan.Basic Study on Fiber Reinforced Resin-Al Alloy Laminated Composites and Its Molding[D].Chongqing:Chongqing University,2013:1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700