聚合物熔体在纺黏非织造牵伸器中的气流牵伸模型与数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Airflow drafting model and numerical simulation of polymer melt in spunbonded nonwoven drafter
  • 作者:赵博
  • 英文作者:ZHAO Bo;Zhongyuan University of Technology;
  • 关键词:纺黏非织造 ; 理论模型 ; 数值求解 ; 喷射流场 ; 应用
  • 英文关键词:spunbonded nonwoven;;theoretical model;;numerical solution;;jet flow field;;application
  • 中文刊名:JZGY
  • 英文刊名:Polyester Industry
  • 机构:中原工学院;
  • 出版日期:2019-01-15
  • 出版单位:聚酯工业
  • 年:2019
  • 期:v.32;No.161
  • 基金:2016年河南省自然科学基金资助项目-面上项目(162300410343)
  • 语种:中文;
  • 页:JZGY201901009
  • 页数:6
  • CN:01
  • ISSN:21-1249/TQ
  • 分类号:17-22
摘要
介绍了有关纺黏非织造过程建模与数值求解的方法。首先在继承前人研究成果的基础上,给出了纺黏非织造过程理论模型;其次,对实际生产中应用的宽狭缝牵伸器的喷射流场进行数值模拟,求出了气流速度在牵伸器中的数值分布。通过对牵伸器喷射流场的数值模拟,得到了气流速度在流场中的数值分布,从而为聚合物熔体的气流牵伸模型求解提供了有利的条件。本研究也显示了在对纺黏非织造布工艺和设备进行计算机辅助设计方面具有较好的应用前景。
        A method for modeling and numerically solving the spunbonded nonwoven process is introduced. Firstly,based on the inheritance of previous research results,the theoretical model of the spunbonded nonwoven process is given. Secondly,the jet flow field of the wide-slit drafter used in actual production is numerically simulated,the numerical distribution of the airflow velocity in the drafter is obtained. Through the numerical simulation of the jet flow field of the drafter,the numerical distribution of the airflow velocity in the flow field is obtained,which provides favorable conditions for solving the airflow drafting model of the polymer melt. This study also shows that it has a good application prospect in the computer-aided design of spunbonded nonwovens processes and equipment.
引文
[1] Hajji N,Spruiell J E. Modeling of the reicofil spunbonding process[J]. INDA Journal of Nonwovens Research,1992,4(2):16-21.
    [2] Zieininski K F,Spruiell J E.结晶性成纤高聚物的数学模型[J].合成纤维,1986,16(4):31-38.
    [3] Hamana I,Matsui M,Kato S. The progress of the filament devel-opment during melt spinning[J]. Melliand Textile Brichte,1969,50(4):382-388.
    [4] Gould J,Smith F S. Air-drag on synthetic-fiber textile monofila-ments and yarns in axial flow speeds of up to 100 meters per sec-ond[J]. Journal of textile institute,1980,72(1):38-49.
    [5] Mastui M. Air drag on a continuous filament in melt spinning[J].Transactions of the Society of Rheology,1976,20(3):465-473.
    [6] Ishihara H,Hayashi S,Ikeuchi H. Computer Simulation of multifilament air jet melt spinning. International Polymer Processing,1989,4(2):91-95.
    [7] Smith A C. Computational modeling of fiber formation in polypro-pylene spunbonding with crystallization:comparison with experi-ments[J]. International Nonwovens Journal,1994,6(1):31-36.
    [8] Grebowicz J,Lau S F,Wunderlich B. The thermal properties ofpolypropylene[J]. Journal of Polymer Sciencd:Polymer Symposi-um,1984,71:19-37.
    [9] Hammami A. Quiescent isothermal and nonisothermal crystalliza-tion of isotactic polypropylene[D]. Masters thesis,University ofTennessee,1990.
    [10] Patel R M. Crystallization kinetic during polymer processing--a-nalysis of available approaches for process modeling[J]. Journal ofApplied Polymer Science,1991,31(10):730-738.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700