基于激光选区熔化的航空发动机喷嘴减重设计及制造技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization Design and Manufacturing Technology for Aero-Engine Nozzle Based on Selective Laser Melting Fabrication
  • 作者:杜宝瑞 ; 姚俊 ; 郑会龙 ; 于浩 ; 林宏杰 ; 丁若晨
  • 英文作者:DU Baorui;YAO Jun;ZHENG Huilong;YU Hao;LIN Hongjie;DING Ruochen;Institute of Engineering Thermophysics, Chinese Academy of Sciences;
  • 关键词:增材制造 ; 激光选区熔化 ; 拓扑优化 ; 喷嘴 ; 点阵结构
  • 英文关键词:Additive manufacturing;;Selective laser melting;;Topology optimization;;Nozzle;;Lattice structure
  • 中文刊名:HKGJ
  • 英文刊名:Aeronautical Manufacturing Technology
  • 机构:中国科学院工程热物理研究所;
  • 出版日期:2019-06-01
  • 出版单位:航空制造技术
  • 年:2019
  • 期:v.62
  • 基金:中国科学院工程热物理研究所创新引导基金(Y85401BZ11)
  • 语种:中文;
  • 页:HKGJ201911017
  • 页数:5
  • CN:11
  • ISSN:11-4387/V
  • 分类号:16-20
摘要
航空发动机喷嘴是影响燃烧性能的关键部件,其组件众多、结构复杂,尤其内部流道加工困难,导致制造周期长、成本高。然而,作为非主承力件的喷嘴非常适用于激光选区熔化制造技术(SLM),这得益于激光选区熔化加工精度高,自由成形能力强,材料组织致密度高。基于SLM可实现自由制造的技术优势,首先对喷嘴的壳体组件进行了一体化设计,并进行了受力分析和拓扑优化,然后采用SLM打印了成形件,经过测量,可获得13.5%的轻量化效果,打印误差小于0.2mm,满足局部精加工的余量要求,随炉试件力学性能达到传统铸锻件水平。SLM简化了喷嘴的加工工序,缩短了制造周期,流道成形精度高,达到了减轻重量和改善性能的目的。
        The aero-engine nozzle is a key component that affects combustion performance. It has many components and complex structure, especially the difficulty of the processing of nozzle internal flow channel, resulting in long manufacturing cycle and high cost. However, the nozzle as a non-main load-bearing part is very suitable for laser selective melting manufacturing(SLM), which is due to the high precision of processing, strong free-form ability and high density of material of laser selection melting. In this paper, based on the technical advantages of SLM, the shell of the nozzle is integrally designed, and the mechanical analysis and topological optimization were analyzed. The molding part was printed by SLM and about 13.5% of its weight has been reduced. The printing error is less than 0.2 mm, meeting the margin requirement of local finishing, and the mechanical properties of the furnace specimen reach the level of traditional casting and forging. SLM simplifies the processing of the nozzle, shortens the manufacturing cycle, and has high precision of flow path forming, which achieves the goal of reducing weight and improving performance.
引文
[1]郝晓宁.激光增材制造毛坯与传统锻件铸件差异性分析[J].航空制造技术,2017,60(5):82-86.HAO Xiaoning.Difference analysis between laseradditive manufacturing and conventional forging and casting[J].Aeronautical Manufacturing Technology,2017,60(5):82-86.
    [2]HE B,LI J,CHENG X,et al.Brittle fracture behavior of a laser additive manufactured near-βtitanium alloy after low temperature aging[J].Materials Science&Engineering A,2017,699:229-238.
    [3]MARCHESI T R,LAHUERTA RD,SILVA E C N,et al.Topologically optimized diesel engine support manufactured with additive manufacturing[J].IFAC-Papers on Line,2015,48(3):2333-2338.
    [4]张小伟.金属增材制造技术在航空发动机领域的应用[J].航空动力学报,2016,31(1):10-15.ZHANG Xiaowei.Application of metal additive manufacturing in aero-engine[J].Journal of Aerospace Power,2016,31(1):10-15.
    [5]闫雪,阮雪茜.增材制造技术在航空发动机中的应用及发展[J].航空制造技术,2016,59(21):70-75.YAN Xue,RUAN Xueqian.Application and development of additive manufacturing technology in aeroengine[J].Aeronautical Manufacturing Technology,2016,59(21):70-75.
    [6]BAMBER G J,DUSELK H,SATZGER W.Over view of additive manufacturing activities at MTU aeroengines[J].Review of Progress in Quantitative Nondestructive Evaluation,2014,1650(1):156-163.
    [7]李涤尘,贺健康,田小永,等.增材制造:实现宏微结构一体化制造[J].机械工程学报,2013,49(6):129-135.LI Dichen,HE Jiankang,TIAN Xiaoyong,et al.Additive manufacturing:integrated fabrication of macro/microstructures[J].Journal of Mechanical Engineering,2013,49(6):129-135.
    [8]张国庆,杨永强,张自勉,等.激光选区熔化成型零件支撑结构优化设计[J].中国激光,2016,43(12):59-66.ZHANG Guoqing,YANG Yongqiang,ZHANG Zimian,et al.Optimal design of support structures in selective laster melding of parts[J].Chinese Journal of Lasers,2016,43(12):59-66.
    [9]HU R,CHENW J,LIQ H,et al.Design optimization method for additive manufacturing of the primary mirror of a large-aperture space telescope[J].Journal of Aerospace Engineering,2017,30(3):04016093.
    [10]WANG C,ZHU J H,ZHANG W H,et al.Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures[J].Structural and Multidisciplinary Optimization,2018,58:35-50.
    [11]MIRZENDEHDEL A M,SURESHK.Support structure constrained topology optimization for additive manufacturing[J].Computer-Aided Design,2016,81:1-13.
    [12]WANG Y Q,ZHANG L,DAYNESS,et al.Design of graded lattice structure with optimized mesostructures for additive manufacturing[J].Materials and Design,2018,142:114-123.
    [13]李修峰,高令飞,王伟,等.一种面向增材制造技术的桁架式支架结构设计方法[J].宇航学报,2017,38(7):751-757.LI Xiufeng,GAO Lingfei,WANG Wei,et al.An additive manufacturing oriented structural design method for trussed bracket[J].Journal of Astronautics,2017,38(7):751-757.
    [14]刘书田,李取浩,陈文炯,等.拓扑优化与增材制造结合:一种设计与制造一体化方法[J].航空制造技术,2017,60(10):26-31.LIU Shutian,LI Quhao,CHEN Wenjiong,et al.Combination of topology optimization and additive manufacturing:anintegration method of structural design and manufacturing[J].Aeronautical Manufacturing Technology,2017,60(10):26-31.
    [15]王会杰,崔照雯,孙峰,等.激光选区熔化成形技术制备高温合金GH4169复杂构件[J].粉末冶金技术,2016,34(5):368-372.WANG Huijie,CUI Zhaowen,SUNFeng,et al.Superalloy GH4169 complicated components prepared by selective laser melting forming technique[J].Powder Metallurgy Technology,2016,34(5):368-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700