炼化装置停工氮气保护与气相缓蚀剂保护效果研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Performance of Nitrogen Protection and Vapor Phase Inhibitor for Equipment Shutdown in Refinery Plant
  • 作者:牛鲁娜 ; 兰正贵 ; 李伟华 ; 宋晓良
  • 英文作者:Niu Luna;Lan Zhenggui;Li Weihua;Song Xiaoliang;SINOPEC Qingdao Research Institute of Safety Engineering;SINOPEC Puguang Branch;
  • 关键词:腐蚀 ; 停工保护 ; 氮气置换 ; 气相缓蚀剂 ; 炼化企业
  • 英文关键词:corrosion;;shutdown protection;;nitrogen replacement;;vapor phase inhibitor;;refinery plant
  • 中文刊名:SAFE
  • 英文刊名:Safety Health & Environment
  • 机构:中国石化青岛安全工程研究院;中国石化普光分公司;
  • 出版日期:2019-05-15
  • 出版单位:安全、健康和环境
  • 年:2019
  • 期:v.19
  • 语种:中文;
  • 页:SAFE201905010
  • 页数:6
  • CN:05
  • ISSN:37-1388/X
  • 分类号:44-49
摘要
模拟炼化企业停工装置内潮湿环境,通过3D腐蚀轮廓扫描、X射线衍射和腐蚀失重等手段开展了20#、16MnR、Cr5Mo和304等4种典型材质的氮气置换保护和气相缓蚀剂辅助保护效果研究。结果表明,在氧含量为0. 5%的氮气保护环境中,碳钢(20#、16MnR)和铬钼钢(Cr5Mo)仍存在一定的腐蚀,气相中试样有明显的蚀坑和溃疡状腐蚀,液相中试样金属光泽不见,局部有腐蚀坑,腐蚀产物主要是疏松的FeOOH和致密的Fe_3O_4;不锈钢(304)无论在气相还是液相中均具有较好的耐蚀性能。加入气相缓蚀剂辅助保护,气相空间的缓蚀效果显著提高,但对液相空间未见明显保护作用。
        The performances of nitrogen protection and vapor phase inhibitor for four kinds of typical materials (20#,16 MnR,Cr5Moand 304) were evaluated in the simulated refinery plant environment by means of 3D profilometric scanning,X-ray diffraction (XRD)and corrosion weight-loss method. The results showed that,carbon steel and chromium-molybdenum steel both had corrosion problems in the nitrogen environment in which the oxygen content was 0. 5%.Coupons had obvious pits and ulcerous corrosionin gas phase,and had localized corrosion and no metallic lusterin liquid phase. The corrosion products mainly consisted of FeOOH and Fe_3O_4. Stainless steels had good corrosion resistance both in gas phase and liquid phase. Vapor phase inhibitor showed perfect corrosion inhibition for steels in gas phase,but no protective effects in liquid phase.
引文
[1]邱志刚,黄贤滨,刘小辉.炼油化工装置闲置停工设备防腐蚀技术探讨[J].石油化工腐蚀与防护,2010,28(3):28-30.
    [2]黄贤滨,兰正贵,刘小辉.炼化企业闲置设备保护技术[J].石油化工设备,2009,38(增刊):42-43.
    [3]牛鲁娜,兰正贵,李伟华,等.氮气保护下炼化企业停工装置的腐蚀行为研究[J].石油炼制与化工,2018,49(7):64-68.
    [4]Suzuki I,Hisamatsu Y,Masuko N.Nature of atmospheric rust on Iron[J].J.Electrochem,Soc:Solidstate science and technology,1980,127(10):2210-2214.
    [5]毛信表.炼油厂闲置设备保护用气相缓蚀剂的研究[D].杭州:浙江工业大学,2002:3-5.
    [6]鞠玉琳,李焰.气相缓蚀剂的研究进展[J].中国腐蚀与防护学报,2014,34(1):27-36.
    [7]杨逢春.炼油化工装置停工备用期间的防腐保护[J].石油化工腐蚀与防护,2014,31(3):44-46.
    [8]Cox H L.Corrosion inhibitor:US,1903287A[P].1993.
    [9]Loto R T,Loto C A,Popoola A P I.Corrosion inhibitor of thiourea and thiadiazole derivatives:a review[J].J.Mater.Environ.Sci.,2012,3(5):885-894.
    [10]李志广,黄红军,万红敬.金属气相防锈技术的应用进展[J].腐蚀与防护,2008,29(11):654-656.
    [11]滕飞,胡钢.气相缓蚀剂的研究进展[J].腐蚀科学与防护技术,2014,26(4):360-364.
    [12]高国,梁成浩.气相缓蚀剂的研究现状及发展趋势[J].中国腐蚀与防护学报,2007,27(4):252-255.
    [13]袁军,邱志刚,单广斌,等.汽柴油加氢装置分馏塔进料/反应产物换热器管束腐蚀原因分析[J].安全、健康和环境,2018,18(2):33-36.
    [14]Pieterse N,Focke W W,Vuorinen E,et al.Estimating the gas permeability of commercial volatile corrosion inhibitors at elevated temperatures with thermo-gravimetry[J].Corros.Sci.,2006,48(8):1986-1988.
    [15]张敏,万红敬,李志广,等.气相缓蚀剂失重评价方法研究[J].包装工程,2007,28(1):40-41.
    [16]JB/T 6071-1992气相防锈剂技术条件[S].
    [17]GB/T 35491-2017缓蚀剂气相缓蚀剂[S].
    [18]Vuorinen E,Botha A.Optimisation of a humidity chamber method for the quantitative evaluation of vapour phase corrosion inhibitors for mild steel[J].Measurement,2013,46(9):3612-3613.
    [19]GB/T 16545-1996金属和合金的腐蚀腐蚀试样上腐蚀产物的清除[S].
    [20]汪川,曹公旺,潘辰,等.碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究[J].中国腐蚀与防护学报,2016,36(1):39-46.
    [21]马桂君.充气条件下G105钢在Na Cl溶液中腐蚀规律和防护措施的研究[D].青岛:中国海洋大学,2007:18-31.
    [22]范玉华,陈云江,李士红,等.热水锅炉受热面的腐蚀分析研究与对策[J].安全、健康和环境,2008,8(6):20-21.
    [23]Focke W W,Nhlapoa N S,Vuorinen E.Thermal analysis and FTIR studies of volatile corrosion inhibitor model systems[J].Corros.Sci.,2013,77(3):88-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700