长期配施有机肥对旱地红壤微团聚体中有机碳含量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Micro-aggregate Associated Organic Carbon in Red Soil as Affected by Long-term Application of Combined Organic-inorganic Fertilizers
  • 作者:王艳玲 ; 蒋发辉 ; 徐江兵 ; 刘真勇 ; 高振
  • 英文作者:WANG Yan-ling;JIANG Fa-hui;XU Jiang-bing;LIU Zhen-yong;GAO Zhen;International Center for Ecology, Meteorology and Environment, College of Applied Meteorology, Nanjing University of Information Sciences and Technology;
  • 关键词:有机无机肥配施 ; 微团聚体 ; 分形维数 ; 有机碳 ; 旱地红壤
  • 英文关键词:Long-term fertilization;;Micro-aggregate;;Organic carbon;;Fractal dimension;;Upland Red Soil
  • 中文刊名:TRTB
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:南京信息工程大学应用气象学院生态气象环境研究中心;
  • 出版日期:2018-04-06
  • 出版单位:土壤通报
  • 年:2018
  • 期:v.49;No.293
  • 基金:国家自然科学基金项目(41571286,41571130053)资助
  • 语种:中文;
  • 页:TRTB201802017
  • 页数:8
  • CN:02
  • ISSN:21-1172/S
  • 分类号:131-138
摘要
以连续种植花生26年的旱地红壤为研究对象,选取了有机无机配施试验区的NPK(对照),NPK+花生秸秆(还田)、NPK+稻秆(稻秆)、NPK+鲜萝卜菜(绿肥)及NPK+猪厩肥(厩肥)等5个肥料处理土壤,采用吸管法逐级提取了大小粒级微团聚体土壤样品,分析了各粒级微团聚体的有机碳含量变化及其对土壤总有机碳的贡献率,探讨了微团聚体的粒级组成与土壤有机碳含量及分形维数的相关关系。结果表明:长期配施有机肥未能显著改变旱地红壤中大小粒级微团聚体比例的分布格局,即0.25~0.05 mm>2~0.25 mm>0.05~0.01 mm>(<0.005 mm)>0.01~0.005 mm,其中优势粒径0.25~0.05 mm微团聚体所占比例为44.3%~50.0%。配施有机肥可以显著增加旱地红壤2~0.25 mm,0.25~0.05 mm及0.05~0.01 mm粒级团聚体有机碳含量,提高特征微团聚体比例,增大分形维数,且随着<0.05 mm粒级微团聚体数量的增多,分形维数均显著增大。各粒级团聚体有机碳的平均含量大小依次为:(<0.005 mm)>0.25~0.05 mm>(2~0.25 mm)>0.05~0.01 mm>0.01~0.005 mm,其中0.25~0.05mm与0.05~0.01 mm粒级微团聚体有机碳受施肥的影响差异显著。土壤有机碳总量与2~0.25 mm、0.25~0.05 mm及0.05~0.01 mm粒级微团聚体有机碳含量呈显著正相关关系,其中0.25~0.05 mm粒级微团聚体对土壤总有机碳的贡献率为55.4%,显著高于其它粒级微团聚体。
        Based on the 26-year long-term fertilization experiment in upland Red Soil, fifteen topsoil samples were collected from the treatments of NPK(Control), NPK + return of peanut straw(Return), NPK + rice straw(Rice straw),NPK + fresh radish(Green manure) and NPK + pig manure(Pig manure). Five sizes of micro-aggregates were sequencially separated in lab by the pipette method according to the Stockes' law, and then organic carbon contents in micro-aggregates and their contributions to the total soil organic carbon(SOC) were analyzed. Relationships among the size distribution of micro-aggregates, SOC and with fractal dimension(D) were also discussed. Results showed that the proportions of the micro-aggregates decreased in the order of 2-0.25 mm > 0.05-0.01 mm >(< 0.005 mm) > 0.01-0.005 mm, with the dominant size of 0.25-0.05 mm micro-aggregate accounting for about 44.3-50% in upland Red Soil. Combined applications of organic fertilizers significantly increased the SOC contents, the proportion of characteristic micro-aggregate(PCM) and D value in Red Soil. With the increase of the proportion of < 0.05 mm micro-aggregate in soil, the D value significantly was increased. Average organic carbon contents in different aggregates decreased as(< 0.005 mm) > 0.25-0.05 mm >(2-0.25 mm) > 0.05-0.01 mm > 0.01-0.005 mm,and the organic carbon contents in 0.25-0.05 mm and 0.05-0.01 mm micro-aggregates were significantly influenced by different fertilizations. SOC was found to positively related to micro-aggregate associated oryanic carbon(2-0.25 mm, 0.25-0.05 mm and 0.05-0.01 mm), with the dominant size(0.25-0.05 mm)contributing the largest to SOC(55.4%), which was significantly higher than that of the other sizes of micro-aggregate.
引文
[1]HARRISON R B,FOOTEN P W,STRAHM B D.Deep Soil Horizons:Contribution and Importance to Soil Carbon Pools and in Assessing Whole-Ecosystem Response to Management and Global Change[J].Forest Science,2011,57(1):67-76.
    [2]KIRKBY C A,RICHARDSON A E,WADE L J,et al.Carbon-nutrient stoichiometry to increase soil carbon sequestration[J].Soil Biology&Biochemistry,2013,60:77-86.
    [3]窦森,李凯,关松.土壤团聚体中有机质研究进展[J].土壤学报,2011,48(2):412-418.
    [4]张曼夏,季猛,李伟,等.土地利用方式对土壤团聚体稳定性及其结合有机碳的影响[J].应用与环境生物学报,2013,19(4):598-604.
    [5]彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报,2004,41(4):618-623.
    [6]LAI R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304(5677):1623-1627.
    [7]DAVIDSON E A,JANSSENS I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J].Nature,2006,440(7081):165.
    [8]ZHANG L,WANG G,ZHENG Q,et al.Quantifying the impacts of agricultural management and climate change on soil organic carbon changes in the uplands of Eastern China[J].Soil&Tillage Research,2017,174:81-91.
    [9]SIX J,BOSSUYT H,DEGRYZE S,et al.A history of research on the link between(micro)aggregates,soil biota,and soil organic matter dynamics[J].Soil&Tillage Research,2004,79(1):7-31.
    [10]DENEFK,ZOTARELLIL,BODDEYRM,etal.Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols[J].Soil Biology&Biochemistry,2007,39(5):1165-1172.
    [11]HUANG S,PENG X,HUANG Q,et al.Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China[J].Geoderma,2010,154(3):364-369.
    [12]SODHI G,BERI V,BENBI D.Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system[J].Soil and Tillage Research,2009,103:412-418.
    [13]候晓静,杨劲松,王相平,等.不同施肥方式下滩涂围垦农田土壤有机碳及团聚体有机碳的分布[J].土壤学报,2015,52(4):818-827.
    [14]SIX J,ELLIOTT E,PAUSTIAN K,et al.Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J].Soil Science Society of America Journal,1998,62:1367-1377.
    [15]陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力水平中的意义[J].土壤学报,1994,31(1):18-25.
    [16]王经纬,王艳玲,姚怡,等.长期施肥对旱地红壤团聚体磷素固持与释放能力的影响[J].土壤学报,2017,54(5):1240-1250.
    [17]WANG Y L,TANG J W,ZHANG H L,et al.Aggregate-associated Organic Carbon and Nitrogen Impacted by the Long-term Combined Application of Rice Straw and Pig Manure in Red Soils in South China[J].Soil Science,2014,179(10-11):522-528.
    [18]中国科学院南京土壤研究所主编写.土壤理化分析[M].1978:518-522.
    [19]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    [20]龚伟,颜晓元,蔡祖聪,等.长期施肥对小麦-玉米轮作土壤微团聚体组成和分形特征的影响[J].土壤学报,2011,48(6):1141-1147.
    [21]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [22]陈恩凤,关连珠,汪景宽,等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49-53.
    [23]郭菊花,陈小云,刘满强,等.不同施肥处理对红壤性水稻土团聚体的分布及有机碳、氮含量的影响[J].土壤,2007,39(5):787-793.
    [24]PULLENMAN M,MARINISSEN J.Physical protection of mineralizable C in aggregates from long-term pasture and arable soil[J].Geoderma,2004,120(3):273-282.
    [25]徐虎,张敬业,蔡岸冬,等.外源有机物料碳氮在红壤团聚体中的残留特征[J].中国农业科学,2015,48(23):4660-4668.
    [26]SILVER W L,MIYA R K.Global patterns in root decomposition:comparisons of climate and litter quality effects[J].Oecologia,2001,129(3):407-419.
    [27]TONG X,XU M,WANG X,et al.Long-term fertilization effects on organic carbon fractions in a red soil of China[J].Catena,2014,113(1):251-259.
    [28]姜灿烂,何园球,刘晓利,等.长期施用有机肥对旱地红壤团聚体结构与稳定性的影响[J].土壤学报,2010,47(4):715-722.
    [29]LUGATO E,SIMONETTI G,MORARI F,et al.Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment[J].Geoderma,2010,157(3-4):80-85.
    [30]LEE S B,CHANG H L,KI Y J,et al.Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy[J].Soil and Tillage Research,2009,104(2):227-232.
    [31]YU H,DING W,LUO J,et al.Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil[J].Soil&Tillage Research,2012,124(4):170-177.
    [32]王彩霞,岳西杰,葛玺祖,等.保护性耕作对土壤微团聚体碳、氮、分布的影响[J].植物营养与肥料学报,2010,16(3):642-649.
    [33]李辉信,袁颖红,黄欠如,等.施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):424-429.
    [34]吕元春,薛丽佳,尹云锋,等.外源新碳在不同类型土壤团聚体中的分配规律[J].土壤学报,2013,50(3):534-539.
    [35]顾鑫,安婷婷,李双异,等.δ13C法研究秸秆添加对棕壤团聚体有机碳的影响[J].水土保持学报,2014,28(2):243-247,312.
    [36]OADES J M.Soil organic-matter and structural stability:Mechanisms and implications for management[J].Plant and Soil,1984,76(1):319-337.
    [37]WATERS A G,OADES J M.Organic matter in water-stable aggregates[J].Advances in soil organic matter research,2003:163-174.
    [38]GALE W J,CAMBARDELLA C A,BAILEY T B.Root-derived carbon and the formation and stabilization of aggregates[J].Soil Science of America Journal,2000,64(1):201-207.
    [39]孙杰,田浩,范跃新,等.长汀红壤侵蚀退化地植被土壤团聚体有机碳含量及分布的影响[J].福建师范大学学报(自然科学版),2017,33(3):87-94.
    [40]LAL R,FOLLETT R F,STEWART B A,et al.Soil carbon sequestration to mitigate climate change and advance food security[J].Soil Science,2007,172(12):943-956.
    [41]刘哲,韩霁昌,孙增慧,等.外源新碳对红壤团聚体及有机碳分布和稳定性的影响[J].环境科学学报,2017,37(6):2351-2359.
    [42]聂军,郑圣先,杨曾平,等.长期施用化肥、猪粪和稻草对红壤性水稻土物理性质的影响[J].中国农业科学,2010,43(7):1404-1413.
    [43]黄传琴,周琴,谭文峰.不同农业利用条件对黄土胶结物质组成与团聚特征的影响[J].华中农业大学学报,2017,36(4):43-49.
    [44]李德成,张桃林.中国土壤颗粒组成的分形特征研究[J].土壤与环境,2000,9(4):263-265.
    [45]程先富,史学正,王洪杰.红壤丘陵区耕层土壤颗粒分形研究[J].地理科学,2003,23(5):617-621.
    [46]张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):221-226.
    [47]FILGUEIRA R R,FOURNIER L L,CERISOLA C I,et al.Particle-size distribution in soils:A critical study of the fractal model validation[J].Geodema,2006,134:327-334.
    [48]夏江宝,顾祝军,周峰,等.红壤丘陵区不同植被类型土壤颗粒分形与水分物理特征[J].中国水土保持科学,2012,10(5):9-15.
    [49]张靓,梁成华,杜立宇,等.长期定位施肥条件下蔬菜保护地土壤微团聚体组成及有机质状况分析[J].沈阳农业大学学报,2007,38(3):331-335.
    [50]韩志卿,张电学,王秋兵,等.不同施肥制度下褐土微团聚体有机碳活性变化[J].水土保持学报,2008,22(4):138-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700