生物质炭及过氧化钙对旱地红壤酶活性和微生物群落结构的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of biochar and calcium peroxide on soil enzyme activities and soil microbial community structure in upland red soil
  • 作者:袁颖红 ; 芮绍云 ; 周际海 ; 刘贵军 ; 张文锋 ; 李丽 ; 樊后保
  • 英文作者:YUAN Ying-hong;RUI Shao-yun;ZHOU Ji-hai;LIU Gui-jun;ZHANG Wen-feng;LI Li;FAN Hou-bao;Nanchang Institute of Technology,Key Laboratory of Degraded Ecosystem Restoration and Watershed Ecological Hydrology;Jiangxi Institute of Red Soil;
  • 关键词:生物质炭 ; 过氧化钙 ; 旱地红壤 ; 酶活性 ; 微生物群落结构
  • 英文关键词:biochar;;calcium peroxide;;upland red soil;;enzyme activities;;microbial community structure
  • 中文刊名:TRFL
  • 英文刊名:Soil and Fertilizer Sciences in China
  • 机构:南昌工程学院江西省退化生态系统修复与流域生态水文重点实验室;江西省红壤研究所;
  • 出版日期:2019-02-10
  • 出版单位:中国土壤与肥料
  • 年:2019
  • 期:No.279
  • 基金:江西省教育厅科研技术研究项目(GJJ161100);; 国家自然科学基金(41461050,31760167,41661065)
  • 语种:中文;
  • 页:TRFL201901015
  • 页数:9
  • CN:01
  • ISSN:11-5498/S
  • 分类号:99-107
摘要
明确生物质炭等改良剂对土壤酶活性及土壤微生物群落结构的影响,对南方红壤旱地改良剂的合理施用及评价不同改良剂对旱地红壤肥力的影响具有重要意义。针对江西旱地红壤进行室内培养试验,试验设置4个处理,即CK、Ca(过氧化钙,1.72 g/kg)、C(生物质炭,21.46 g/kg)、C+Ca(过氧化钙,1.72 g/kg;生物质炭,21.46 g/kg),利用磷脂脂肪酸方法(PLFA),研究改良剂对土壤微生物量和组成以及土壤酶活性、土壤活性有机碳的影响。结果表明:旱地红壤中添加生物质炭和过氧化钙土壤提高可溶性有机碳(DOC)和微生物量碳(MBC)含量;增加蔗糖酶(INV)、淀粉酶(AMY)及脲酶(URE)活性,特别是配施(C+Ca)显著提高土壤活性碳含量及酶活性。PLFA分析表明,土壤微生物总PLFAs量的大小顺序为:C+Ca>C>Ca>CK;各处理土壤细菌的相对丰度最大,大约占微生物总含量的80%,放线菌次之,大约占微生物总含量的13%~15%,而真菌和丛枝菌根真菌的相对丰度较低。生物质炭和过氧化钙增加了革兰氏阴性菌(GN)/革兰氏阳性菌(GP)值,尤以C+Ca处理增加幅度最大。主成分分析(PCA)表明,添加生物质炭和过氧化钙能够改善土壤微生物群落结构;计算主成分的综合得分,配施(C+Ca)处理的综合得分最高,对土壤微生物群落结构的影响最大。冗余分析(RDA)表明,土壤MBC、DOC和土壤INV酶活性是影响土壤微生物数量和结构的主要因子。因此,施用生物质炭和过氧化钙能够明显提高旱地红壤微生物生物量,改变红壤微生物群落结构以及激发红壤酶活性,且配施效果最显著。
        A laboratory experiment was conducted to study the effect of biochar and other amendments on soil enzyme activities and soil microbial community structure,which was of great significance for rational application of soil amendments and evaluation of the effects of different amendments on soil fertility in upland red soil. Four treatments were used,which included CK(control),Ca(calcium peroxide,1.72 g/kg),C(biochar,21.46 g/kg),C+Ca(biochar, 21.46 g/kg,calcium peroxide,1.72 g/kg). Phospholipid fatty acid(PLFA)profiles for all treatments were used to characterize the microbial community structure. Soil microbial biomass carbon(MBC),dissolved organic carbon(DOC)and soil enzyme activities were also determined. The results showed that the amendments of biochar and calcium peroxide improved the content of MBC,DOC and the activities of soil invertase(INV),amylase(AMY)and urease(URE),especially in combination with C+Ca. The average total PLFAs content of soil microorganism followed a decreasing order of C+Ca,C,Ca,and CK. The relative abundance of soil bacteria was the largest,accounting for 80% of the total microbial biomass,followed by actinomycetes,which accounted for 13% to 15% of the total microbial biomass,while the relative abundance of fungi and arbuscular mycorrhizal fungi was relatively low. Biochar and calcium peroxide improved the ratio of Gram-negative bacteria(GN)/Gram-positive bacteria(GP),and that was the highest under C+Ca treatment.Principal component analysis of soil microbial PLFAs showed that adding biochar and calcium peroxide improved soil microbial community structure. The total score of principal components was calculated and combined treatment(C+Ca)had the highest comprehensive score,which had the greatest influence on soil microbial community structure. Redundancy analysis showed that soil MBC,DOC and soil invertase activities were all the main factors affecting the quantity and structure of soil microorganisms. Therefore,biochar and calcium peroxide can significantly improve soil microbial biomass,and improve soil microbial community structure and stimulate soil enzyme activities in upland red soil,and the most significant treatment is combined treatment.
引文
[1]陈祝春.科尔沁沙地沙丘土壤生物学活性[J].中国沙漠,1995,15(3):283-287.
    [2]景宇鹏,李跃进,姚一萍,等.盐渍化土壤酶活性及其与微生物、理化因子的关系[J].中国农业科技导报,2016,18(2):128-138.
    [3]张瑞娟,李华,林勤保,等.土壤微生物群落表征中磷脂脂肪酸(PLFA)方法研究进展[J].山西农业科学,2011,39(9):1020-1024.
    [4]赵军,耿增超,尚杰,等.生物炭及炭基硝酸铵对土壤微生物量碳、氮及酶活性的影响[J].生态学报,2016,36(8):2355-2362.
    [5]Yusuf A A,Abaidoo R C,Iwuafor E N O,et al.Rotation effects of grain legumes and fallow on maize yield,microbial biomass and chemical properties of an Alfisol in the Nigerian savanna[J].Agriculture,Ecosystems&Environment,2009,129(1/3):325-331.
    [6]Graber E R,Harel Y M,Kolton M,et al.Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J].Plant&Soil,2010,337(1-2):481-496.
    [7]Rutigliano F A,Romano M,Marzaioli R,et al.Effect of biochar addition on soil microbial community in a wheat crop[J].European Journal of Soil Biology,2014,60(2):9-15.
    [8]Dempster D N,Gleeson D B,Solaiman Z M,et al.Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J].Plant and Soil,2012,354(1):311-324.
    [9]王丽渊,丁松爽,刘国顺.生物质炭土壤改良效应研究进展[J].中国土壤与肥料,2014,(3):1-6.
    [10]袁颖红,张文锋,周际海,等.改良剂对旱地红壤活性有机碳及土壤酶活性的影响[J].土壤,2017,49(5):909-918.
    [11]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[C].北京:气象出版社,2006.54-78.
    [12]Bligh E G,Dyer W J.A rapid method of total lipid extraction and purification[J].Canadian Journal of Biochemistry&Physiology,1959,37(8):911-917.
    [13]White D C,Davis W M,Nickels J S,et al.Determination of the sedimentary microbial biomas by extractable lipid phosphate[J].Oecologia,1979,40(40):51-62.
    [14]Yuan Y H,Chen H H,Yuan W Q,et al.Is biochar-manure co-compost a better solution for soil health improvement and N2Oemissions mitigation?[J].Soil Biology&Biochemistry,2017,113:14-25.
    [15]De Vries F T,Hoffland E,Van Eekeren N,et al.Fungal/bacterial ratios in grasslands with contrasting nitrogen management[J].Soil Biology and Biochemistry,2006,38:2092-2103.
    [16]王保君,王伟,胡乃娟,等.麦秸还田下水氮管理对稻田土壤养分、酶活性及碳库的短期影响[J].核农学报,2016,30(5):957-964.
    [17]匡崇婷,江春玉,李忠佩,等.添加生物质炭对红壤水稻土有机碳矿化和微生物生物量的影响[J].土壤,2012,44(4):570-575.
    [18]刘炳君,杨扬,李强,等.调节茶园土壤pH对土壤养分、酶活性及微生物数量的影响[J].安徽农业科学,2011,39(32):19822-19824.
    [19]Laird D A,Fleming P,Davis D D,et al.Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J].Geoderma,2010,158(3-4):443-449.
    [20]Smebye A,Alling V,Vogt R D,et al.Biochar amendment to soil changes dissolved organic matter content and composition[J].Chemosphere,2015,142:100-105.
    [21]闫浩.宁南山区植被恢复工程对土壤矿化过程中微生物活性与群落结构的影响[D].杨凌:西北农林科技大学,2014.
    [22]邱莉萍,刘军,王益权.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10(3):277-280.
    [23]刘善江,夏雪,陈桂梅,等.土壤酶的研究进展[J].中国农学通报,2011,27(21):1-7.
    [24]沈宏,曹志洪,徐本生.玉米生长期间土壤微生物量与土壤酶变化及其相关性研究[J].应用生态学报,1999,10(4):471-474.
    [25]Acosta-Martínez V,Cruz L,Sotomayor-Ramírez D,et al.Enzyme activities as affected by soil properties and land use in a tropical watershed[J].Applied Soil Ecology,2007,35(1):35-45.
    [26]Lehmann J D,Joseph S.Biochar for environmental management:science and technology[J].Science and Technology Earthscan,2009,25(1):15801-15811.
    [27]牛永志,郑昀晔,马文广,等.过氧化钙增氧对漂浮育苗烤烟生长的影响[J].中国烟草学报,2014,20(3):63-67.
    [28]赵兰凤,张新明,程根,等.生物炭对菜园土壤微生物功能多样性的影响[J].生态学报,2017,37(14):4754-4762.
    [29]张星杰,刘景辉,李立军,等.保护性耕作方式下土壤养分、微生物及酶活性研究[J].土壤通报,2009,40(3):542-545.
    [30]Thiet R K,Frey S D,Six J.Do growth yield efficiencies differ between soil microbial co mmunities differing in fungal:bacterial ratios?Reality check and methodological issues[J].Soil Biology and Biochemistry,2006,38(4):837-844.
    [31]刘满强,陈小云,郭菊花,等.土壤生物对土壤有机碳稳定性的影响[J].地球科学进展,2007,22(2):152-158.
    [32]Lehmann J,Rillig M C,Thies J,et al.Biochar effects on soil biota-A review[J].Soil Biology&Biochemistry,2011,43(9):1812-1836.
    [33]卜洪震,王丽宏,尤金成,等.长期施肥管理对红壤稻田土壤微生物量碳和微生物多样性的影响[J].中国农业科学,2010,43(16):3340-3347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700