Graphene Tamm plasmon-induced giant Goos–H?nchen shift at terahertz frequencies
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Graphene Tamm plasmon-induced giant Goos–H?nchen shift at terahertz frequencies
  • 作者:唐娇 ; 许姣 ; 郑之伟 ; 董胡 ; 董俊 ; 钱盛友 ; 郭珺 ; 蒋乐勇 ; 项元江
  • 英文作者:Jiao Tang;Jiao Xu;Zhiwei Zheng;Hu Dong;Jun Dong;Shengyou Qian;Jun Guo;Leyong Jiang;Yuanjiang Xiang;School of Physics and Electronics, Hunan Normal University;International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University;Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering,Jiangsu Normal University;
  • 中文刊名:GXKB
  • 英文刊名:中国光学快报(英文版)
  • 机构:School of Physics and Electronics, Hunan Normal University;International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University;Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering,Jiangsu Normal University;
  • 出版日期:2019-02-25
  • 出版单位:Chinese Optics Letters
  • 年:2019
  • 期:v.17
  • 基金:supported by the National Natural Science Foundation of China(Nos.11704119,11647135,11474090,and 11704259);; the Natural ScienceFoundation of Hunan Province(Nos.2018JJ3325,14JJ6007,and 2018JJ3557);; the Scientific Research Fund of Hunan Provincial Education Department(Nos.17C0945,17B160,and 17B025)
  • 语种:英文;
  • 页:GXKB201902007
  • 页数:6
  • CN:02
  • ISSN:31-1890/O4
  • 分类号:29-34
摘要
In this Letter, we have shown that a giant Goos–H?nchen shift of a light beam reflected at terahertz frequencies can be achieved by using a composite structure, where monolayer graphene is coated on one-dimensional photonic crystals separated by a dielectric slab. This giant Goos–H?nchen shift originates from the enhancement of the electrical field, owing to the excitation of optical Tamm states at the interface between the graphene and onedimensional photonic crystal. It is shown that the Goos–H?nchen shift in this structure can be significantly enlarged negatively and can be switched from negative to positive due to the tunability of graphene's conductivity. Moreover, the Goos–H?nchen shift of the proposed structure is sensitive to the relaxation time of graphene and the thickness of the top layer, making this structure a good candidate for a dynamic tunable optical shift device in the terahertz regime.
        In this Letter, we have shown that a giant Goos–H?nchen shift of a light beam reflected at terahertz frequencies can be achieved by using a composite structure, where monolayer graphene is coated on one-dimensional photonic crystals separated by a dielectric slab. This giant Goos–H?nchen shift originates from the enhancement of the electrical field, owing to the excitation of optical Tamm states at the interface between the graphene and onedimensional photonic crystal. It is shown that the Goos–H?nchen shift in this structure can be significantly enlarged negatively and can be switched from negative to positive due to the tunability of graphene's conductivity. Moreover, the Goos–H?nchen shift of the proposed structure is sensitive to the relaxation time of graphene and the thickness of the top layer, making this structure a good candidate for a dynamic tunable optical shift device in the terahertz regime.
引文
1.F.Goos and H.H?nchen,Ann.Phys.436,333(1947).
    2.A.W.Snyder and J.D.Love,Appl.Opt.15,1(1976).
    3.K.Y.Bliokh and A.Aiello,J.Opt.15,014001(2013).
    4.A.Farmani,A.Mir,and Z.Sharifpour,Appl.Surf.Sci.453,358(2018).
    5.X.Wang,M.Sang,W.Yuan,Y.Nie,and H.Luo,IEEE Photon.Technol.Lett.28,3(2015).
    6.T.Tang,C.Li,L.Luo,Y.Zhang,and J.Li,Appl.Phys.B 122,6(2016).
    7.M.Tang,M.Ran,F.Chen,X.Wang,H.Li,X.Chen,and Z.Cao,Opt.Laser Technol.55,42(2014).
    8.M.S.Jang and H.Atwater,Phys.Rev.Lett.107,20(2011).
    9.M.R.Dennis and J.B.Gotte,New J.Phys.14,073013(2012).
    10.M.Ornigotti,A.Aiello,and C.Conti,Opt.Lett.40,558(2015).
    11.S.Liu,W.X.Yang,and Z.Zhu,J.Appl.Phys.119,143101(2016).
    12.W.Yu,H.Sun,and L.Gao,Sci.Rep.7,45866(2017).
    13.Y.P.Wong,Y.Miao,J.Skarda,and O.Solgaard,Opt.Lett.43,2803(2018).
    14.L.G.Wang,H.Chen,and S.Y.Zhu,Opt.Lett.30,21(2005).
    15.Y.Xu,C.T.Chan,and H.Chen,Sci.Rep.5,8681(2015).
    16.W.X.Yang,S.Liu,Z.Zhu,Ziauddin,and R.K.Lee,Opt.Lett.40,3133(2015).
    17.J.Shi,J.Qi,L.Qian,C.Han,and C.Yan,Chin.Opt.Lett.16,061602(2018).
    18.L.Chen,Z.Cao,F.Ou,H.Li,Q.Shen,and H.Qiao,Opt.Lett.32,11(2007).
    19.X.Li,P.Wang,F.Xing,X.Chen,Z.Liu,and J.Tian,Opt.Lett.39,19(2014).
    20.I.V.Soboleva,V.V.Moskalenko,and A.A.Fedyanin,Phys.Rev.Lett.108,123901(2012).
    21.X.Yin and L.Hesselink,Appl.Phys.Lett.85,3(2004).
    22.Y.Hirai,K.Matsunaga,Y.Neo,T.Matsumoto,and M.Tomita,Appl.Phys.Lett.112,5(2018).
    23.R.Yang,W.Zhu,and J.Li,Opt.Express 22,2(2014).
    24.A.K.Geim and K.S.Novoselov,Nat.Mater.6,183(2007).
    25.B.Guo,Chin.Opt.Lett.16,020004(2018).
    26.D.Sun,M.Wang,Y.Huang,Y.Zhou,M.Qi,M.Jiang,and Z.Ren,Chin.Opt.Lett.15,051603(2017).
    27.S.C.Dhanabalan,J.S.Ponraj,H.Zhang,and Q.Bao,Nnaoscale 8,6410(2016).
    28.J.S.Ponraj,Z.Q.Xu,S.C.Dhanabalan,H.Mu,Y.Wang,J.Yuan,P.Li,S.Thakur,M.Ashrafi,K.Mccoubrey,Y.Zhang,S.Li,H.Zhang,and Q.Bao,Nanotechnology 27,462001(2016).
    29.Z.Q.Li,E.A.Henriksen,Z.Jiang,Z.Hao,M.C.Martin,P.Kim,H.L.Stormer,and D.N.Basov,Nat.Phys.4,7(2008).
    30.F.Bonaccorso,Z.Sun,T.Hasan,and A.C.Ferrari,Nat.Photon.4,611(2010).
    31.F.H.L.Koppens,D.E.Chang,and F.J.García de Abajo,Nano Lett.11,3370(2011).
    32.A.Madani and S.R.Entezar,Superlattices Microst.86,105(2015).
    33.M.Cheng,P.Fu,X.Chen,X.Zeng,S.Feng,and R.Chen,J.Opt.Soc.Am.B 31,B10(2014).
    34.Y.Fan,N.-H.Shen,F.Zhang,Z.Wei,H.Li,Q.Zhao,Q.Fu,P.Zhang,T.Koschny,and C.M.Soukoulis,Adv.Opt.Mater.4,11(2016).
    35.Y.Xiang,X.Dai,J.Guo,H.Zhang,S.Wen,and D.Tang,Sci.Rep.4,5483(2014).
    36.S.Grosche,M.Ornigotti,and A.Szameit,Opt.Express 23,30195(2015).
    37.X.Zeng,M.Al-Amri,and M.S.Zubairy,Opt.Express 25,23579(2017).
    38.S.Grosche,A.Szameit,and M.Ornigott,Phys.Rev.A 94,063831(2016).
    39.A.V.Kavokin,I.A.Shelykh,and G.Malpuech,Phys.Rev.B 72,233102(2005).
    40.M.Kaliteevski,I.Iorsh,S.Brand,R.A.Abram,J.M.Chamberlain,A.V.Kavokin,and I.A.Shelykh,Phys.Rev.B 76,165415(2007).
    41.S.Brand,M.A.Kaliteevski,and R.A.Abram,Phys.Rev.B 79,085416(2009).
    42.H.Zhou,G.Yang,K.Wang,H.Long,and P.Lu,Opt.Lett.35,24(2010).
    43.G.Lu,K.Yu,Z.Wen,and J.Chen,Nanoscale 5,4(2013).
    44.X.Wang,X.Jiang,Q.You,J.Guo,X.Dai,and Y.Xiang,Photon.Res.5,536(2017).
    45.Y.Zhang,Y.W.Tan,H.L.Stormer,and P.Kim,Nature 438,201(2005).
    46.T.Zhan,X.Shi,Y.Dai,X.Liu,and J.Zi,J.Phys.25,215310(2013).
    47.L.G.Wang,M.Ikram,and M.S.Zubairy,Phys.Rev.A 77,023811(2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700