响应面优化铁碳微电解法预处理富营养化湖水的工艺条件
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process Conditions of Iron-Carbon Micro-Electrolysis for Eutrophic Lake Water Pretreatment by Response Surface Methodology
  • 作者:吴超 ; 蒋善庆 ; 李宛科 ; 聂郁丰 ; 凌泽玉 ; 王利平
  • 英文作者:WU Chao;JIANG Shanqing;LI Wanke;NIE Yufeng;LING Zeyu;WANG Liping;School of Environmental & Safety Engineering, Changzhou University;
  • 关键词:响应面法 ; 铁碳微电解 ; 湖水 ; 预处理 ; Chl-a
  • 英文关键词:response surface methodology;;iron-carbon microelectrolysis;;lake water;;pretreatment;;Chl-a
  • 中文刊名:ZSJS
  • 英文刊名:Water Purification Technology
  • 机构:常州大学环境与安全工程学院;
  • 出版日期:2019-04-26 10:54
  • 出版单位:净水技术
  • 年:2019
  • 期:v.38;No.204
  • 基金:国家自然科学基金项目(21477050);国家自然科学基金项目(21607017);; 常州国际科技合作计划(CZ20140017)
  • 语种:中文;
  • 页:ZSJS201904019
  • 页数:9
  • CN:04
  • ISSN:31-1513/TQ
  • 分类号:86-93+118
摘要
利用铁碳微电解工艺预处理富营养化湖水,考察了初始pH、铁碳总投加量和反应时间3个因素对富营养化水体中TP、TN、COD和Chl-a去除效果的影响,并运用响应面法对该工艺参数进行了优化与预测。结果表明,优化后的铁碳微电解预处理最佳工艺条件如下:初始pH值为3.8,铁碳投加量为13.7 g,反应时间为29.6 min。该条件下对TP、TN、COD、Chl-a的去除率分别达到84.2%、48.7%、77.7%、71.8%,这一结果与预测值相接近,进一步表明该工艺对富营养化湖水具有较好的预处理效果,且基于响应面法建立的二次多项式模型具有较好的实际应用价值。
        The lake water was pretreated by iron-carbon micro-electrolysis process. Effects of initial pH value, total dosage of iron-carbon and reaction time on the removal efficiency of TP, TN, COD and Chl-a in eutrophic lake water were investigated. And process parameters were also optimized and predicted by the response surface methodology. The results showed that optimized pretreatment condition by iron-carbon micro-electrolysis such as initial pH value, total dosage of iron-carbon and reaction time were 3.8, 13.7 g and 29.6 min, respectively. And the removal efficiency of TP, TN, COD and Chl-a were 84.2%, 48.7%, 77.7% and 71.8% at above condition, respectively. The actual result was close to the predicted value, indicating that iron-carbon micro-electrolysis process had a good pretreatment ability on eutrophic water, and the established model based on response surface methodology had an excellent practical guidance value.
引文
[1] QIN B Q, GAO G, ZHU G W, et al. Lake eutrophication and its ecosystem response[J]. Science Bulletin, 2013, 58(9):961-970.
    [2] 姜娟, 郑小燕, 陈良霞. 去富营养化技术在城市景观水治理中的应用——以“奉贤区南桥新城水系整治二期水系”水质净化项目为例[J]. 净水技术, 2016(s2):95-99.
    [3] 黄娟,安艳玲,吴起鑫. 清水江流域水体中氮磷分布及富营养化程度评价[J]. 环境工程, 2016, 34(5):143-147.
    [4] 白文辉,王晓昌,王楠,等. 北方高盐景观水体氮磷时空分布特征及富营养化评价[J]. 环境工程, 2017, 35(4):120-124.
    [5] 陈诗雯,贾沛莉,周燕平,等. 预氧化强化混凝去除富营养化水体中藻类研究回顾[J]. 净水技术, 2017(12):44-49.
    [6] 邵云海,邓佳,黄思远,等. 臭氧催化氧化-BAC处理垃圾渗滤液试验研究[J]. 环境工程, 2016(s1):1-3.
    [7] HAN Y H,LI H,LIU M L,et al. Pyrification treatment of dyes wastewater with a novel micro-electrolysis reactor[J].Separation and Purification Technology,2016,20(10):241-247.
    [8] LUO J, SONG G, LIU J, et al. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface[J]. Journal of Colloid & Interface Science, 2014, 49(21):21-25.
    [9] WANG X, GONG X, ZHANG Q, et al. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction[J]. Journal of Environmental Sciences, 2013, 25(s1):63-68.
    [10] 李俊波, 杨健, 杨智迪,等. 铁碳微电解法预处理印染废水的正交试验研究[J]. 工业安全与环保, 2017, 43(9):12-15.
    [11] 曾超. 铁碳微电解-混凝深度处理印染废水作用机制研究[D]. 上海:东华大学, 2015.
    [12] 潘全, 王惠, 杨玉娇,等. 铁碳微电解处理印染废水的研究[J]. 湖北大学学报(自然科学版), 2011, 33(2):165-167.
    [13] 周晓霞. 微电解方法处理染料废水的研究[D]. 阜新:辽宁工程技术大学, 2009.
    [14] 姜兴华, 刘勇健. 铁碳微电解法在废水处理中的研究进展及应用现状[J]. 工业安全与环保, 2009, 35(1):26-27.
    [15] 赵菲菲, 卫俊杰, 陈金海,等. 铁碳微电解在典型化工废水预处理中的应用[J]. 广东化工, 2014, 41(16):251-252.
    [16] 李险峰, 李剑, 魏瑶. 探讨提高工业废水处理中高级氧化技术的应用效果[J]. 石化技术, 2016, 23(7):43-43.
    [17] DENG S, LI D, YANG X, et al. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition[J]. Bioresource Technology, 2016, 26(23):677-686.
    [18] 张冰. 铁炭—富载体对腈纶废水生化处理的强化研究[D]. 兰州:兰州交通大学, 2014.
    [19] RUAN X C, LIU M Y, ZENG Q F, et al. Degradation and decolorization of reactive red X-3B aqueous solution by ozone integrated with internal micro-electrolysis[J]. Separation & Purification Technology, 2010, 74(2):195-201.
    [20] 王利平, 章滢, 汪楚乔,等. 电气浮-陶瓷膜工艺处理富营养化湖泊型原水[J]. 水处理技术, 2013, 39(12):115-117.
    [21] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [22] 陈明华, 谢良国, 付志强,等. 丙酮法和热乙醇法测定浮游植物叶绿素 a的方法比对[J]. 环境监测管理与技术, 2016, 28(2):46-48.
    [23] 童桂凤, 陈志芳, 范莹. 分光光度法测定叶绿素a的比较[J]. 环境监测管理与技术, 2012, 24(1):53-55.
    [24] 翁笑艳, 林美爱, 严颖. 地表水浮游植物叶绿素a测定方法比较研究[J]. 中国环境监测, 2009, 25(3):36-38.
    [25] 韩桂春, 谷丰, 张忠臣. 淡水中叶绿素a测定方法的探讨[J]. 中国环境监测, 2005, 21(1):55-57.
    [26] 白帆, 李杰, 王亚娥, 等. 响应面法优化海绵铁/碳微电解技术预处理腈纶废水[J]. 环境工程学报, 2017, 11(7):3957-3964.
    [27] 李杰, 程爱华, 孙莉婷, 等. 铁炭耦合Fenton试剂-混凝沉淀法预处理DMAC废水[J]. 环境科学研究, 2010, 23(7):902-907.
    [28] 汤景鹏. 铁碳微电解处理猪场沼液的试验研究[D]. 成都:成都理工大学, 2012.
    [29] 罗剑非. 铁碳微电解预处理DMAC废水试验研究[D].武汉:武汉科技大学,2018.
    [30] KIM S C. Application of response surface method as an experimental design to optimize coagulation–flocculation process for pre-treating paper wastewater[J]. Journal of Industrial & Engineering Chemistry, 2016, 38(2):93-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700