蛋氨酸特异性合成途径关键酶——高丝氨酸O-酰基转移酶的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress in the Study of Homoserine O-Acyltransferase, the Key Enzyme in the Methionine Biosynthesis Pathway
  • 作者:刘诗梦 ; 韩彩静 ; 高云娜 ; 赵兰 ; 卢红妍 ; 闵伟红
  • 英文作者:LIU Shimeng;HAN Caijing;GAO Yunna;ZHAO Lan;LU Hongyan;MIN Weihong;National Engineering Laboratory for Wheat and Corn Further Processing, College of Food Science and Engineering,Jilin Agricultural University;
  • 关键词:蛋氨酸 ; 高丝氨酸O-酰基转移酶 ; 特异性合成途径 ; 热稳定性
  • 英文关键词:methionine;;homoserine O-acyltransferase;;biosynthesis pathway;;thermal stability
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:吉林农业大学食品科学与工程学院小麦和玉米深加工国家工程实验室;
  • 出版日期:2018-09-20 14:59
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.600
  • 基金:国家自然科学基金面上项目(31771957)
  • 语种:中文;
  • 页:SPKX201911038
  • 页数:7
  • CN:11
  • ISSN:11-2206/TS
  • 分类号:269-275
摘要
在蛋氨酸生物合成过程中,蛋氨酸特异性合成反应的第一步是高丝氨酸酰基化,由高丝氨酸O-酰基转移酶催化,生成酰基高丝氨酸。高丝氨酸O-酰基转移酶受到末端产物蛋氨酸和S-腺苷蛋氨酸的反馈抑制和反馈阻遏,且高温下极易失活,严重影响碳流流向蛋氨酸,是蛋氨酸生物合成的关键酶,因此对高丝氨酸O-酰基转移酶的研究和改造具有重要意义。但目前关于高丝氨酸O-酰基转移酶的改造和研究较少,在微生物代谢途径中,碳流不能过多流入蛋氨酸合成途径,制约了微生物过量积累蛋氨酸,阻碍了发酵法生产蛋氨酸的工业进程。本文简述了高丝氨酸O-酰基转移酶在蛋氨酸生物合成途径中的作用,在介绍该酶的结构、催化机制和研究现状的基础上,提出该酶在反馈抑制和提高稳定性方面的分子改造策略。
        The first step in methionine synthesis is homoserine acylation catalyzed by homoserine acyltransferase to generate acylhomoserine. Homoserine O-acyltransferase, the key enzyme for methionine biosynthesis, is feedback inhibited or feedback repressed by the end products methionine and S-adenosylmethionine, and is easily inactivated at high temperatures,thus seriously affecting the flow of carbon toward methionine. In this context, studying and modifying homoserine O-acyltransferase are of great significance. However, there are few reports in the literature on studies and modification of homoserine O-acyltransferase. In the microbial metabolic pathways, inadequate carbon flow toward the methionine synthesis pathway can restrict microbial accumulation of methionine, and consequently hinder the industrial fermentation of methionine. In this paper, the role of homoserine O-acyltransferase in the methionine biosynthetic pathway is briefly described. Based on the structure catalytic mechanism of the enzyme as well as a review of recent studies on it, molecular modification strategies for feedback inhibition regulation and stability improvement are proposed.
引文
[1]石程,程存归.固-液相转移催化法合成蛋氨酸[J].化学工程师,1999(2):5-6.DOI:10.16247/j.cnki.23-1171/tq.1999.02.002.
    [2]KUMAR D,GOMES J.Methionine production by fermentation[J].Biotechnology Advances,2005,23(1):41-61.DOI:10.1016/j.biotechadv.2004.08.005.
    [3]李华.系统代谢工程改造大肠杆菌生产L-蛋氨酸[D].无锡:江南大学,2017:1-102.
    [4]QIN Tianyu,HU Xiaoqing,HU Jinyu,et al.Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine[J].Biotechnology and Applied Biochemistry,2015,62(4):563-573.DOI:10.1002/bab.1290.
    [5]李莹.基于代谢工程选育谷氨酸棒杆菌L-蛋氨酸高产菌[D].哈尔滨:哈尔滨工业大学,2016:62-63.
    [6]BECKER J,WITTMANN C.Systems and synthetic metabolic engineering for amino acid production:the heartbeat of industrial strain development[J].Current Opinion in Biotechnology,2012,23(5):718-726.DOI:10.1016/j.copbio.2011.12.025.
    [7]WALTHER T,TOPHAM C M,IRAGUE R,et al.Construction of a synthetic metabolic pathway for biosynthesis of the nonnatural methionine precursor 2,4-dihydroxybutyric acid[J].Nature Communications,2017,8:1-12.DOI:10.1038/ncomms15828.
    [8]高海军,杨一飞,孟青.重组大肠杆菌合成蛋氨酸的代谢途径优化[J].高校化学工程学报,2017,31(4):884-891.DOI:10.3969/j.issn.1003-9015.2017.04.018.
    [9]KROMER J O,WITTMANN C,SCHRODER H,et al.Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum[J].Metabolic Engineering,2006,8(4):353-369.DOI:10.1016/j.ymben.2006.02.001.
    [10]MIYAJIMA R,SHIIO I.Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum.VII.properities of homoserine O-transacetylase[J].Journal of Biochemistry,1973,73(5):1061-1068.
    [11]BRUNE I,BARZANTNY H,KLOTZEL M,et al.Identification of McbR as transcription regulator of aecD and genes involved in methionine and cysteine biosynthesis in Corynebacterium jeikeium K411[J].Journal of Biotechnology,2011,151(1):22-29.DOI:10.1016/j.jbiotec.2010.11.005.
    [12]MIZRAHI I,BIRAN D,GUR E,et al.Tools for the study of protein quality control systems:use of truncated homoserine trans-succinylase as a model substrate for ATP-dependent proteolysis in Escherichia coli[J].Journal of Microbiological Methods,2007,70(1):82-85.DOI:10.1016/j.mimet.2007.03.012.
    [13]RASOULY A,RON E Z.Interplay between the heat shock response and translation in Escherichia coli[J].Research in Microbiology,2009,160(4):288-296.DOI:10.1016/j.resmic.2009.03.007.
    [14]ROTEM O,BIRAN D,RON E Z.Methionine biosynthesis in Agrobacterium tumefaciens:study of the first enzyme[J].Research in Microbiology,2013,164(1):12-16.DOI:10.1016/j.resmic.2012.10.005.
    [15]朱运明,王晓飞,闵伟红,等.北京棒杆菌天冬氨酸激酶G377定点突变及酶学性质表征[J].食品科学,2014,35(9):192-197.DOI:10.7506/spkx1002-6630-201409038.
    [16]任军,闵伟红,詹冬玲,等.天冬氨酸激酶突变体G277K中AK基因的克隆表达及酶学性质表征[J].食品科学,2014,35(11):149-154.DOI:10.7506/spkx1002-6630-201411030.
    [17]FERLA M P,PATRICK W M.Bacterial methionine biosynthesis[J].Microbiology,2014,160:1571-1584.DOI:10.1099/mic.0.077826-0.
    [18]NAZI I,WRIGHT G D.Catalytic mechanism of fungal homoserine transacetylase[J].Biochemistry,2005,44(41):13560-13566.DOI:10.1021/bi0514764.
    [19]WANG Mingzhu,LIU Lin,WANG Yanli,et al.Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans[J].Biochemical and Biophysical Research Communications,2007,363(4):1050-1056.DOI:10.1016/j.bbrc.2007.08.153.
    [20]RODRIGUEZ E S,REED R W,LI J,et al.Structures of homoserine transacetylase MetA from mycobacteria[EB/OL].[2017-07-12].http://www.rcsb.org/pdb/explore/explore.do?structureId=5W8O.
    [21]THANGAVELU B,PAVLOVSKY A G,VIOLA R.Structure of homoserine O-acetyltransferase from Staphylococcus aureus:the first Gram-positive ortholog structure[J].Structural Biology Communications,2014,70(10):1340-1345.DOI:10.1107/s2053230x14018664.
    [22]ROSEN R,BECHER D,BüTTNER K,et al.Probing the active site of homoserine trans-succinylase[J].FEBS Letters,2004,577(3):386-392.DOI:10.1016/j.febslet.2004.10.037.
    [23]COE D M,VIOLA R E.Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase[J].Archives of Biochemistry and Biophysics,2007,461(2):211-218.DOI:10.1016/j.abb.2007.03.004.
    [24]周奕含,李泽生,韩葳葳,等.大肠杆菌中高丝氨酸琥珀酰基转移酶的同源模建与对接研究[J].分子科学学报,2008,24(2):144-148;150.DOI:10.13563/j.cnki.jmolsci.2008.02.001.
    [25]LIU Qian,LIANG Yong,ZHANG Yun,et al.YjeH is a novel exporter of l-methionine and branched-chain amino acids in Escherichia coli[J].Applied and Environmental Microbiology,2015,81(22):7753-7766.DOI:10.1128/AEM.02242-15.
    [26]郭谦,方芳,李江华,等.代谢工程改造蛋氨酸代谢途径构建高产L-蛋氨酸大肠杆菌[J].过程工程学报,2013,13(6):1013-1019.
    [27]屈更思,郭谦,方芳,等.过量表达蛋氨酸合成途径基因对重组大肠杆菌产蛋氨酸的影响[J].工业微生物,2013,43(5):21-26.
    [28]USUDA Y,KURAHASHI O.Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli[J].Applied and Environmental Microbiology,2005,71(6):3228-3234.DOI:10.1128/AEM.71.6.3228-3234.2005.
    [29]BESTEL-CORRE G,CHATEAU M,FIGGE R,et al.Recombinant enzyme with altered feedback sensitivity:WO/2004IB01901[P].(2005-05-12)[2017-07-12].
    [30]MOECKEL B,PFEFFERLE W,HUTHMACHER K,et al.Nucleotide sequences which code for the mete gene:US20010294252P[P].(2001-07-17)[2017-07-12].
    [31]HE Y Y,GARVIE C W,ELWORTHY S,et al.Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ[J].Journal of Molecular Biology,2002,320(1):39-53.DOI:10.1016/S0022-2836(02)00423-0.
    [32]AUGUSTUS A M,REARDON P N,SPICER L D.MetJ repressor interactions with DNA probed by in-cell NMR[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(13):5065-5069.DOI:10.1073/pnas.0811130106.
    [33]CUTHBERTSON L,NODWELL J R.The TetR family of regulators[J].Microbiology and Molecular Biology Reviews,2013,77(3):440-475.DOI:10.1128/MMBR.00018-13.
    [34]HAN Guoqiang,HU Xiaoqing,QIN Tianyu,et al.Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-L-methionine[J].Enzyme and Microbial Technology,2016,83:14-21.DOI:10.1016/j.enzmictec.2015.11.001.
    [35]KROMER J O,BOLTEN C J,HEINZLE E,et al.Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR[J].Microbiology,2008,154:3917-3930.DOI:10.1099/mic.0.2008/021204-0.
    [36]段昭炜.大肠杆菌发酵生产蛋氨酸关键酶metA突变位点筛选[D].长春:吉林大学,2015:27-30.
    [37]RON E Z,SHANI M.Growth rate of Escherichia coli at elevated temperatures:reversible inhibition of homoserine trans-succinylase[J].Journal of Bacteriology,1971,107(2):397-400.
    [38]GUR E,BIRAN D,GAZIT E,et al.In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures[J].Molecular Microbiology,2002,46(5):1391-1397.DOI:10.1046/j.1365-2958.2002.03257.
    [39]MORDUKHOVA E A,LEE H S,PAN J G.Improved thermostability and acetic acid tolerance of Escherichia coli via directed evolution of homoserine O-succinyltransferase[J].Applied and Environmental Microbiology,2008,74(24):7660-7668.DOI:10.1128/aem.00654-08.
    [40]MORDUKHOVA E A,KIM D,PAN J G.Stabilized homoserine O-succinyltransferases(MetA)or L-methionine partially recovers the growth defect in Escherichia coli lacking ATP-dependent proteases or the DnaK chaperone[J].BMC Microbiology,2013,179(13):1-13.DOI:10.1186/1471-2180-13-179.
    [41]钱辉,陆兆新,张充,等.鱼腥藻脂肪氧合酶热稳定性提高的分子动力学模拟[J].食品科学,2017,38(2):1-6.DOI:10.7506/spkx1002-6630-201702001.
    [42]CHENG Y S,CHEN C C,HUANG C H,et al.Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum:insights into the molecular basis of a thermophilic enzyme[J].The Journal of Biological Chemistry,2014,289(16):11020-11028.DOI:10.1074/jbc.M114.550905.
    [43]FONSECA-MALDONADO R,VIEIRA D S,ALPONTI J S,et al.Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase[J].The Journal of Biological Chemistry,2013,288(35):25522-25534.DOI:10.1074/jbc.M113.485953.
    [44]HAN M H,WANG X F,DING H Y,et al.The role of N-glycosylation sites in the activity,stability,and expression of the recombinant elastase expressed by Pichia pastoris[J].Enzyme and Microbial Technology,2014,54:32-37.DOI:10.1016/j.enzmictec.2013.09.014.
    [45]DAMNJANOVIC J,NAKANO H,IWASAKI Y.Deletion of a dynamic surface loop improves stability and changes kinetic behavior of phosphatidylinositol-synthesizing Streptomyces phospholipase D[J].Biotechnology and Bioengineering,2014,111(4):674-682.DOI:10.1002/bit.25149.
    [46]刘晓萌,张彭湃,胡升,等.细胞色素P450 BM-3热稳定性的半理性改造[J].高校化学工程学报,2015,29(5):1138-1144.DOI:10.3969/j.issn.1003-9015.2015.00.019.
    [47]YIN Xin,HU Die,LI Jianfnag,et al.Contribution of disulfide bridges to the thermostability of a type A feruloyl esterase from Aspergillus usamii[J].PLoS ONE,2015,10(5):1-16.DOI:10.1371/journal.pone.0126864.
    [48]王小艳,樊艳爽,韩蓓佳,等.糖基化改造β-葡萄糖醛酸苷酶的热稳定性[J].化工学报,2015,66(9):3669-3677.DOI:10.11949/j.issn.0438-1157.20150885.
    [49]CHO J S,CHOI K R,PRABOWO C P S,et al.CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum[J].Metabolic Engineering,2017,42:157-167.DOI:10.1016/j.ymben.2017.06.010.
    [50]JIANG Y,QIAN F,YANG J,et al.CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum[J].Nature Communications,2017,8:1-11.DOI:10.1038/ncomms15179.
    [51]LIU J,WANG Y,LU Y J,et al.Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum[J].Microbial Cell Factories,2017,16(1):205.DOI:10.1186/s12934-017-0815-5.
    [52]PENG F,WANG X Y,SUN Y,et al.Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system[J].Microbial Cell Factories,2017,16(1):201.DOI:10.1186/s12934-017-0814-6.
    [53]ZHU X N,ZHAO D D,QIU H N,et al.The CRISPR/Cas9-facilitated multiplex pathway optimization(CFPO)technique and its application to improve the Escherichia coli xylose utilization pathway[J].Metabolic Engineering,2017,43:37-45.DOI:10.1016/j.ymben.2017.08.003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700