基于无监督深度学习的多模态手术轨迹快速分割方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Fast Approach for Multi-Modality Surgical Trajectory Segmentation with Unsupervised Deep Learning
  • 作者:谢劼欣 ; 赵红发 ; 邵振洲 ; 施智平 ; 关永
  • 英文作者:XIE Jiexin;ZHAO Hongfa;SHAO Zhenzhou;SHI Zhiping;GUAN Yong;Information Engineering College, Capital Normal University;Beijing Advanced Innovation Center for Imaging Technology;Beijing Key Laboratory of Light Industrial Robot and Safety Verification, Capital Normal University;
  • 关键词:机器人辅助微创手术 ; 多模态轨迹分割 ; 无监督深度学习 ; 合并后处理
  • 英文关键词:robot-assisted minimally invasive surgery;;multi-modality trajectory segmentation;;unsupervised deep learning;;post-merger processing
  • 中文刊名:JQRR
  • 英文刊名:Robot
  • 机构:首都师范大学信息工程学院;成像技术北京市高精尖创新中心;首都师范大学轻型工业机器人与安全验证北京市重点实验室;
  • 出版日期:2018-11-01 15:33
  • 出版单位:机器人
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金(61702348,61772351,61602326,61602324);; 国家重点研发计划(2017YFB1303000,2017YFB1302800)
  • 语种:中文;
  • 页:JQRR201903004
  • 页数:11
  • CN:03
  • ISSN:21-1137/TP
  • 分类号:31-40+47
摘要
传统的手术机器人轨迹分割方法存在耗时长、分割准确度差且容易产生过度分割等问题.为解决上述问题,本文提出了一种基于特征提取网络DCED-Net(密集连接的卷积编码-解码网络)的多模态手术轨迹分割方法.DCED-Net采用无监督方法,不必进行十分耗时的人工标注,使用密集连接结构,使图像信息能更有效地在卷积层间传递,从而提高了特征提取质量.将特征提取后的视频数据和运动学数据投入转移状态聚类(TSC)模型得到预分割结果.为进一步提高分割精度,提出了一种基于轨迹段间相似性的合并后处理算法,通过衡量轨迹段间的4个相似性指标,包括主成分分析、互信息、数据中心距离和动态时间规整,将相似度高的分割段进行迭代合并,从而降低过度分割造成的影响.公开数据集JIGSAWS上的大量实验证明,与经典的轨迹分割聚类方法相比,本文方法的分割准确率最高提升了48.4%,分割速度加快了6倍以上.
        Traditional trajectory segmentation approaches for surgical robot are time consuming, low-accuracy and prone to over-segmentation. For those problems, a multi-modality surgical trajectory segmentation approach is proposed based on DCED-Net(densely-concatenated convolutional encoder-decoder network) feature extraction network. DCED-Net adopts an unsupervised approach and a densely-concatenated structure, and the time consuming manual annotation is not required.Therefore, the image information can be transferred more effectively between convolutional layers, and the quality of extracted features is improved. The kinematic data and video data obtained after feature extraction are input into a transition state clustering(TSC) model to get pre-segmentation results. To further improve the segmentation accuracy, a post-merger processing algorithm based on the similarity between trajectory segments is proposed. By measuring four similarity indicators between trajectory segments, including principal component analysis, mutual information, data center distance, and dynamic time warping, the segments with high similarity are iteratively merged to reduce the impact of over-segmentation. A lot of experiments on the public data set JIGSAWS show that the proposed approach can increase the segmentation accuracy by up to 48.4% and accelerate the segmentation speed by more than 6 times, compared with the classical trajectory segmentation and clustering methods.
引文
[1] Barbash G I, Glied S A. New technology and health care costs–The case of robot-assisted surgery[J]. New England Journal of Medicine, 2010, 363(8):701-704.
    [2] Reiley C E, Lin H C, Varadarajan B, et al. Automatic recognition of surgical motions using statistical modeling for capturing variability[M]//Studies in Health Technology and Informatics,Vol.132. Amsterdam, Netherlands:IOS Press, 2008:396-401.
    [3] Favaro A, Lad A, Formenti D, et al. Straight trajectory planning for keyhole neurosurgery in sheep with automatic brain structures segmentation[M]//Proceedings of SPIE, Vol.10135.Bellingham, USA:SPIE, 2017:UNSP 101352E.
    [4] Murali A, Sen S, Kehoe B, et al. Learning by observation for surgical subtasks:Multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:1202-1209.
    [5] Lin H C, Shafran I, Yuh D, et al. Towards automatic skill evaluation:Detection and segmentation of robot-assisted surgical motions[J]. Computer Aided Surgery, 2006, 11(5):220-230.
    [6] Reiley C E, Hager G D. Task versus subtask surgical skill evaluation of robotic minimally invasive surgery[C]//12th International Conference on Medical Image Computing and ComputerAssisted Intervention. Berlin, Germany:Springer, 2009:435-442.
    [7] Ahmidi N, Gao Y, Béjar B, et al. String motif-based description of tool motion for detecting skill and gestures in robotic surgery[C]//16th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany:Springer, 2013:26-33.
    [8] Lee S H, Suh I H, Calinon S, et al. Autonomous framework for segmenting robot trajectories of manipulation task[J]. Autonomous Robots, 2015, 38(2):107-141.
    [9] Krishnan S, Garg A, Patil S, et al. Transition state clustering:Unsupervised surgical trajectory segmentation for robot learning[J]. International Journal of Robotics Research, 2017, 36(13-14):1595-1618.
    [10] Murali A, Garg A, Krishnan S, et al. TSC-DL:Unsupervised trajectory segmentation of multi-modal surgical demonstrations with deep learning[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2016:4150-4157.
    [11] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA:IEEE,2017:2261-2269.
    [12] Zhang Y L, Tian Y P, Kong Y, et al. Residual dense network for image super-resolution[EB/OL].(2018-02-24)[2018-06-01]. https://arxiv. org/pdf/1802.08797.
    [13] Odena A, Dumoulin V, Olah C. Deconvolution and checkerboard artifacts[J]. Distill, 2016, 1(10):e3.
    [14] Kingma D P, Ba J L. Adam:A method for stochastic optimization[EB/OL].(2015-07-23)[2018-06-01]. https://arxiv.org/pdf/1412.6980v8.
    [15] Krzanowski W J. Between-groups comparison of principal components[J]. Journal of the American Statistical Association,1979, 74(367):703-707.
    [16]韩敏,刘晓欣.基于互信息的分步式输入变量选择多元序列预测研究[J].自动化学报,2012,38(6):999-1006.Han M, Liu X X. Stepwise input variable selection based on mutual information for multivariate forecasting[J]. Acta Automatica Sinica, 2012, 38(6):999-1006.
    [17] Berndt D J, Clifford J. Finding patterns in time series:A dynamic programming approach[M]//Advances in Knowledge Discovery and Data Mining. Menlo Park, USA:AAAI, 1996:229-248.
    [18] Fard M J, Ameri S, Chinnam R B, et al. Soft boundary approach for unsupervised gesture segmentation in roboticassisted surgery[J]. IEEE Robotics and Automation Letters,2017, 2(1):171-178.
    [19] Gao Y, Vedula S S, Reiley C E, et al. JHU-ISI gesture and skill assessment working set(JIGSAWS):A surgical activity dataset for human motion modeling[C]//Modeling and Monitoring of Computer Assisted Interventions Workshop. 2014:1-10.
    [20] Wu C X, Zhang J M, Savarese S, et al. Watch-n-patch:Unsupervised understanding of actions and relations[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway,USA:IEEE, 2015:4362-4370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700