超精密微小型复合加工机床精度稳定性研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Precision stability of the ultra-precision micro-compound machine tool
  • 作者:孙椰望 ; 杨秋娟 ; 曹也 ; 刘佳慧 ; 郑中鹏 ; 刘彪 ; 李启明
  • 英文作者:SUN Yewang;YANG Qiujuan;CAO Ye;LIU Jiahui;ZHENG Zhongpeng;LIU Biao;LI Qiming;Precision Micro Structure Processing Technology Research Center,Bejing Institute of Technology;Bejing Institute of Technology( Tengzhou) Co. ,Ltd.;Shandong Huasong Beili Intelligent Technology Co. ,Ltd.;Beijing BSD Science Development Co. ,Ltd.;Shandong Lunan Machine Tool Co. ,Ltd.;
  • 关键词:超精密 ; 微细结构 ; 复合加工 ; 精度稳定性 ; 非线性
  • 英文关键词:ultra-precision;;microstructure;;compound machining;;precision stability;;nonlinear
  • 中文刊名:ZJYC
  • 英文刊名:Manufacturing Technology & Machine Tool
  • 机构:北京理工大学精密微小型制造技术研究所;北京理工(滕州)研究院有限公司;山东华颂北理智能科技有限公司;北京北特圣迪科技发展有限公司;山东鲁南机床有限公司;
  • 出版日期:2019-01-02
  • 出版单位:制造技术与机床
  • 年:2019
  • 期:No.679
  • 基金:国防973(3030020321403);; “高档数控机床与基础制造装备”科技重大专项(2012ZX04010-061);; 装发预研(41423020201);; 中国博士后科学基金资助项目(2017M620634);; 山东省重点研发计划(2017CXGC0801)
  • 语种:中文;
  • 页:ZJYC201901018
  • 页数:5
  • CN:01
  • ISSN:11-3398/TH
  • 分类号:62-66
摘要
针对超精密微小型复合加工机床的精度时变性和非线性变动问题,综述了超精密机床结构设计、超精密加工精度稳定性、热因素对超精密加工精度影响、结构蠕变引起精度变动4个典型方面的研究状况,提出超精密微小型复合加工机床的精度稳定性主要受到力、热、环境变动所引起的结构亚微米级精度的时空变化,并且这些变化的影响机理、变动规律属于非线性特征,因此,超精密复合加工精度稳定性的实现必须解决这些问题。
        For the time-varying feature and nonlinear fluctuation of ultra-precision micro compound machine tool precision,this article reviews four typical aspects including the ultra-precision machine tool structural design,ultra-precision machining stability,thermal influence on ultra-precision machining accuracy,structural creep on the precision. It indicates that the precision stability of ultra-precision machine tool is mainly influenced by the structural sub-micron accuracy change due to force,heat,and temporal variability of the environment; moreover,the change mechanism and change law belong to nonlinear characteristics.
引文
[1]Kai Cheng,Professor Paul Shore.Special issue on design of ultraprecision and micro machine tools and their key enablingtechnologies[J].International Journal of Machine Tools&Manufacture,2010,50(4):309.
    [2]袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,1999:21-23.
    [3]王先逵.精密复合加工技术[J].现代制造工程,2012(2):1-6.
    [4]周磊.微纳米动态切削系统建模及表面形貌的预测分析研究[D].哈尔滨:哈尔滨工业大学,2009.
    [5]张之敬,金鑫.精密微小型车铣复合加工技术[M].北京:国防工业出版社,2014.
    [6]李二波.高精度微小型车铣复合加工机床静动态性能研究[D].北京:北京理工大学,2016.
    [7]Wang Z G,Cheng X,Nakamoto K,et al.Design and development of a precision machine tool using counter motion mechanisms[J].International Journal of Machine Tools&Manufacture,2010(50):357-365.
    [8]Dehong Huo,Kai Cheng,Frank Wardle.A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines[J].International Journal of Machine Tools&Manufacture,2010(50):335-343.
    [9]邓勇军.高精度微小型车铣复合加工机床误差建模与补偿研究[D].北京:北京理工大学,2015.
    [10]Brecher C,Utsch P,Klar R,et al.Compact design for high precision machine tools[J].International Journal of Machine Tools&Manufacture,2010(50):328-334.
    [11]梁迎春,陈国达,孙雅洲,等.超精密机床研究现状与展望[J].哈尔滨工业大学学报,2014,46(5):29-38.
    [12]马军旭,赵万华,张根保.国产数控机床精度保持性分析及研究现状[J].中国机械工程,2015,26(22):3108-3115.
    [13]赵万华,张俊,刘辉,等.数控机床精度评价新方法[J].中国工程科学,2013,15(1):93-97.
    [14]卢秉恒,赵万华,张俊,等.高速高加速度下的进给系统机电耦合[J].机械工程学报,2013,49(6):2-10.
    [15]赵万华.加强核心技术研究促进国产机床发展[J].航空制造技术,2016(10):26-27.
    [16]李天箭.超精密机床多尺度集成设计方法研究[D].哈尔滨:哈尔滨工业大学,2013.
    [17]张之敬,金鑫,周敏.精密微小型制造理论、技术及其应用[J].机械工程学报,2007,43(1):49-61.
    [18]Zong W J,Li Z Q,Sun T,et al.The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining[J].International Journal of Machine Tools&Manufacture,2010(50):411-419.
    [19]Rahman M,Asad A B M A,Masaki T,et al.A multiprocess machine tool for compound micromachining[J].International Journal of Machine Tools&Manufacture,2010(50):344-356.
    [20]刘冰冰.大长径比微细轴车铣加工尺寸精度研究[D].北京:北京理工大学,2013.
    [21]袁哲俊,谢大纲.纳米技术的最新发展[J].制造技术与机床,2000(5):5-8.
    [22]Aggogeri F,Merlo A,Mazzola M.Multifunctional structure solutions for Ultra High Precision(UHP)machine tools[J].International Journal of Machine Tools&Manufacture,2 0 1 0(5 0):3 6 6-3 7 3.
    [23]Liang Yingchun,Su Hao,Lu Lihua,et al.Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method[J].Int J Adv Manuf Technol,2015(76):635-645.
    [24]严乐,刘红忠,卢秉恒,等.高精度压印机热误差补偿中温度变量的辨识[J].西安交通大学学报,2006,40(7):51-54.
    [25]Creighton E,Honegger A,Tulsian A,et al.Analysis of thermal errors in a high-speed micro-milling spindle[J].International Journal of Machine Tools and Manufacture,2010,50(4):386-393.
    [26]Kim J,Nakayama W,Ito Y,et al.Estimation of thermal parameters of the enclosed electronic package system by using dynamic thermal response[J].Mechatronics,2009,19(6):1034-1040.
    [27]方兵,精密数控机床及其典型结合面理论建模与实验研究[D].长春:吉林大学,2012.
    [28]Fu M W,Wang J L,Korsunsky A M.A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components[J].International Journal of Machine Tools&Manufacture,2016(109):94-125.
    [29]杨挺青.材料与结构蠕变研究近况[J].力学进展,2000,30(3):476-478.
    [30]王文瑞,王刚,胡挺.高温应变栅丝蠕变对应变测量精度影响与补偿[J].工程科学学报,2017,39(1):88-95.
    [31]Zhang Q,Zuo Z X,Liu J X.Stepped isothermal fatigue analysis of engine piston[J].Fatigue&Fracture of Engineering Materials&Structures,2014,37:417-426.
    [32]张庆.铝合金蠕变-疲劳耦合特性研究及其在柴油机活塞寿命预测中的应用[D].北京:北京理工大学,2015.
    [33]吴嘉锟.螺栓预紧序列与机床精度保持的相关性研究[D].大连:大连理工大学,2015.()

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700