铜与Fe_3O_4纳米颗粒在包气带中的迁移规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on migration law of copper and Fe_3O_4 nanoparticles in vadose zone
  • 作者:李天宇 ; 林山杉 ; 纪续
  • 英文作者:LI Tian-yu;LIN Shan-shan;JI Xu;School of Environment,Northeast Normal University;
  • 关键词:包气带 ; 铜污染 ; Fe_3O_4纳米颗粒 ; 动态吸附
  • 英文关键词:aerated zone;;copper pollution;;Fe_3O_4 nanoparticle;;dynamic adsorption
  • 中文刊名:XBSF
  • 英文刊名:Journal of Northwest Normal University(Natural Science)
  • 机构:东北师范大学环境学院;
  • 出版日期:2019-03-15
  • 出版单位:西北师范大学学报(自然科学版)
  • 年:2019
  • 期:v.55;No.205
  • 基金:国家自然科学基金资助项目(41772236)
  • 语种:中文;
  • 页:XBSF201902018
  • 页数:7
  • CN:02
  • ISSN:62-1087/N
  • 分类号:112-117+125
摘要
通过土柱模拟包气带区域,采用控制变量方法,在定水头、定流量的条件下,分别进行不同流速和不同粒径多孔介质的Cu~(2+)穿透实验.结果表明,随着不饱和多孔介质粒径的减小,Cu~(2+)的迁移距离变小,沙子对Cu~(2+)吸附效果增强;随着土柱中流量的减小,不饱和多孔介质对Cu~(2+)的吸附效果有不同程度的增强;Fe_3O_4纳米颗粒对Cu~(2+)确实有吸附作用,吸附后产生的聚合体更容易被不饱和多孔介质所吸附;Fe_3O_4纳米颗粒与Cu~(2+)的共迁移可以减少Cu~(2+)在包气带中的迁移距离,减少Cu~(2+)污染.
        The Cu~(2+) penetration experiment of porous media with different flow rates and different particle sizes is carried out by simulating the aeration zone with soil column and using the control variable method under the conditions of constant head and constant flow.The experimental results show that with the decrease of the particle size of unsaturated porous media,the migration distance of Cu~(2+) becomes smaller,and the adsorption effect of sand on Cu~(2+) is enhanced.With the decrease of the flow rate in the soil column,the adsorption effect of unsaturated porous media on Cu~(2+) is improved.Fe_3O_4 nanoparticles do adsorb on Cu~(2+),and the polymer produced after adsorption is more easily adsorbed by unsaturated porous media.The co-migration of Fe_3O_4 nanoparticles with Cu~(2+) can reduce the migration distance of Cu~(2+) in the vadose zone,and accordingly reduce the pollution of Cu~(2+).
引文
[1] SHAHID M,DUMAT C,KHALID S.Cadmiumbioavailability,uptake,toxicity and detoxification in soil-plant system[J].Reviews of Environmental Contamaination and Toxicoligy,2016,241(1):77.
    [2] KAPUR M,MONDAL M K.Design and model parameters estimation for fixed-bed column adsorption of Cu(Ⅱ) and Ni(Ⅱ) ions using magnetized saw dust[J].Desalination and Water Treatment,2015,57(26):11292.
    [3] YAHAYA N K E M,ABUSTAN I,LATIFF M F P M,et al.Fixed-bed column study for Cu(Ⅱ) removal from aqueous solutions using rice husk based activated Carbon[J].IJET-IJENS,2015,11(1):248.
    [4] MONDAL M.Removal of Pb(Ⅱ) ions from aqueous solution using activated tea waste:Adsorption on a fixed-bed column[J].Environment Manage,2009,90(11):3266.
    [5] 王玉军,周东美,孙瑞娟,等. 土壤中铜、铅离子的竞争吸附动力学[J].中国环境科学,2006,26(5):555.
    [6] 于童,徐绍辉,林青.不同初始氧化还原条件下土壤中重金属的运移研究Ⅰ.单一Cd、Cu、Zn 的土柱实验[J].土壤学报,2012,49(4):688.
    [7] 谭文峰,周素珍,刘凡,等. 土壤中铁铝氧化物与黏土矿物交互作用的研究进展[J].土壤,2007,39(5):726.
    [8] ZHOU D D,JIANG X H,LUB Y.Cotransport of graphene oxide and Cu(Ⅱ) through saturated porous media[J].Science of the Total Environment,2016,550(1):717.
    [9] MESTICOU Z,KACEM M,DUBUJET P.Influence of ionic strength and flow rate on silt particle deposition and release in saturated porousmedium:experiment and modeling[J].Transport Porous Media,2014,103(1):1.
    [10] FAN W,JIANG X H,LU Y,et al.Effects of surfactants on graphene oxide nanoparticles transport in saturated porous media[J].Environment,2015,35(5):12.
    [11] ZHANG Man,HE Feng,ZHAO Dong-ye,et al.Transport of stabilized iron nanoparticles in porous media:effects ofsurface and solution chemistry and role of adsorption[J].Journal of Hazardous Materials,2017,322(6):284.
    [12] PHENRAT T,KIM H J,FAGERLUND F,et al.Particle size distribution,concentration,and magnetic attraction affecttransport of polymer-modified Fe nanoparticles in sand columns[J].Environ Sci Technol,2009,43(3):5079.
    [13] JIEMVARANGKUL P,ZHANG W,LIEN H.Enhanced transport of polyelectrolytestabilized nanoscale zero-valent iron(nZVI) in porous media[J].Chemistry Engineering Journal,2011,170(2):482.
    [14] RAFATULLAH M,SULAIMAN O,HASHIM R,et al.Adsorption of methylene blue on low-cost adsorbents:a review[J].Journal of Hazardous Materials,2010,177(1-3):70.
    [15] ZHANG L D,FANG M.Nanomaterials in pollution trace detection and environmental improvement[J].Nano Today,2010,5(2):128.
    [16] BRAMLEYH J,TYERMAN S D H.Floodwater infiltration through root channels on a sodic clay floodplain and the influence on a local tree species Eucalyptus Largiflorens[J].Plant and Soil,2003,253:275.
    [17] DEEKS A J,WOLF J P.A virtual work derivation of the scaled boundary finite-element method for elastostatics[J].Computational Mechanics,2002,28(6):489.
    [18] CHOUDHARY M,JETLEY U K,KHAN M A,et al.Effect of heavy metal stress on proline,malondialdehyde and superoxide dismutase activity in the cyanob-acterium spirulina platensis-S5[J].Ecotoxicology and Environmental Safety,2007,66(3):204.
    [19] STRANGE J,MACNAIR M R.Evidence for a role for the cell membrane in copper tolerance of Mimulus guttatus,Fischer ex DC[J].New Phytologist,1991,119(3):383.
    [20] MUYUMBA D K,LIENARD A,MAHY G,et al.Characterization of soil-plant systems in the hills of the copper belt in Katanga:a review[J].Biotechnologie Agronomie Societeet Enviornnement,2015,19(2):204.
    [21] 洪若琦,王健,李建华,等. 磁性Fe3O4纳米颗粒制备方法的比较[J].过程工程学报,2004,8(4):482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700