黔北构造煤与原生结构煤解吸初期特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on characteristics of initial desorption of tectonic coal and primary structural coal in northern Guizhou
  • 作者:陈刘瑜 ; 李希建 ; 毕娟 ; 刘钰
  • 英文作者:CHEN Liuyu;LI Xijian;BI Juan;LIU Yu;Mining College,Guizhou University;Engineering Center for Safe Mining Technology Under Complex Geologic Condition;Institute of Gas Disaster Prevention and Coalbed Methane Development of Guizhou University;
  • 关键词:温压特性 ; 构造煤 ; 原生结构煤 ; 解吸初期特征
  • 英文关键词:temperature-pressure characteristics;;tectonic coal;;primary structural coal;;characteristics of initial desorption
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:贵州大学矿业学院;复杂地质矿山开采安全技术工程中心;贵州大学瓦斯灾害防治与煤层气开发研究所;
  • 出版日期:2019-02-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.531
  • 基金:国家自然科学基金资助项目(51874104);; 贵州省科技计划资助项目(黔科合平台人才[2018]5781号);; 贵州省教育厅资助项目(黔教合KY字[2013]112)
  • 语种:中文;
  • 页:MTKJ201902018
  • 页数:7
  • CN:02
  • ISSN:11-2402/TD
  • 分类号:112-118
摘要
为揭示贵州构造煤与原生结构煤解吸初期特性,以黔北兴隆矿构造煤与原生结构煤进行不同温压条件下的吸附/解吸试验,绘制累积瓦斯解吸量与时间的关系图;对比分析温压特性对构造煤和原生结构煤解吸初期的影响。结果表明:构造煤与原生结构煤累积瓦斯解吸量随时间单调递增;同时段内,温度越高瓦斯解吸总量越大,解吸前60 s的解吸量及解吸速率越大,压力越高,解吸速率越大,其增量随时间呈衰减态势,解吸量和解吸压力呈正相关;构造煤的瓦斯解吸初速度、0~60 s的解吸量和60 s以后的解吸速率衰减程度均大于原生结构煤; 60~1 800 s内原生结构煤解吸量大于构造煤;1 800~7 200 s内原生结构煤解吸速率及解吸总量大于构造煤,解吸速率衰减程度比构造煤慢;随着解吸温度和瓦斯压力增大,原生结构煤超过构造煤的解吸量随之增大。
        This paper is devoted to reveal the initial desorption characteristics of tectonic coal and primary structural coal in Guizhou.The adsorption and desorption experiments of tectonic coal and primary structural coal of Xinglong Mine in northern Guizhou have been carried out under different temperatures and pressures. The relationship between accumulated gas desorption capacity and time is illustrated. The influence of temperature and pressure on initial desorption of tectonic coal and primary structural coal is then analyzed. The results show that the cumulative desorption capacity of tectonic coal and primary structural coal increases with time. In the same period,greater total gas desorption capacity is associated with higher temperature. Greater desorption capacity and desorption rate within 60 seconds before desorption are associated with higher temperature as well. Similarly,the desorption rate increases as the pressure increases and the increasing rate decreases with time. The results also show that the desorption capacity is proportion to the desorption pressure. The tectonic coal is greater than the primary structural coal in initial desorption velocity,desorption capacity within the first 60 seconds,and decrease of desorption rate after 60 seconds. However,the primary structural coal is larger than the tectonic coal in desorption capacity between 60 and1 800 seconds. Desorption rate and total desorption capacity of the primary structural coal are higher than desorption rate and total desorption capacity of the tectonic coal between 1 800 and 7 200 seconds while decrease of desorption rate of the primary structural coal is slower than that of the tectonic coal. Moreover,the desorption capacity difference between the primary structured coal and the tectonic coal increases with the increases of desorption temperature and gas pressure.
引文
[1]贾天让,王蔚,闫江伟,等.贵州省煤矿瓦斯赋存构造控制规律及分带划分[J].地学前缘,2014,21(4):281-288.JIA Tianrang,WANG Wei,YAN Jiangwei,et al.The rule of tectonic control and the zoning division of coalmine gas occurrence in Guizhou Province[J]. Earth Science Frontiers,2014,21(4):281-288.
    [2]李希建,沈仲辉,刘钰,等.黔西北构造煤与原生结构煤孔隙结构对吸解特性影响实验研究[J].采矿与安全工程学报,2017,34(1):170-176.LI Xijian,SHEN Zhonghui,LIU Yu,et al. The experimental research on the impact of pore structure in tectonic coal and primary structure coal on gas adsorption-desorptionin northern Guizhou[J]. Journal of Mining&Saftey Technology,2017,34(1):170-176.
    [3]胡广青,姜波,陈飞,等.不同类型构造煤特性及其对瓦斯突出的控制研究[J].煤炭科学技术,2012,40(2):111-115.HU Guangqing,JIANG Bo,CHEN Fei,et al.Study on different type structure coal features and gas outburst control[J]. Coal Science and Technology,2012,40(2):111-115.
    [4]姜波,秦勇.构造煤化学结构演化与瓦斯特性耦合机理[J].地学前缘,2009,16(2):263-269.JIANG Bo,QIN Yong.The coupling mechanism of the evolution of chemical structure with the characteristics of gas of tectonic coals[J].Earth Science Frontiers,2009,16(2):263-269.
    [5]杨起,吴冲龙,汤达祯.中国煤变质作用[J].地球科学:中国地质大学学报,1996:21(3):311-319.YANG Qi,WU Chonglong,TANG Dazhen. China metamorphism in China[J]. Earth Science:Journal of China University of Geosciences,1996,21(3):311-319.
    [6]梁宝臻.中国的煤变质区[J].煤炭学报,1994,19(5):542-549.LIANG Baozhen.Coal Metamorphism Region[J]. Journal of China Coal Society,1994,19(5):542-543.
    [7] WU Y D,JU Y W,HOU Q L,et al.Comparison of coalbed gas generation between Huaibei-Huainan coalfields and Qinshui coal basin based on the tectono-thermal modeling[J]. Science China Earth Science,2011,54:1069-1077.
    [8]简阔,傅雪海,张玉贵.构造煤煤层气解吸阶段分析及最大瞬时解吸量计算[J].煤炭科学技术,2015,43(4):57-62.JIAN Kuo,FU Xuehai,ZHANG Yugui. Analysis on coalbed methane desorption stage calculation on max instant desorption value of tectonic coal[J].Coal Science and Technology,2015,43(4):57-62.
    [9] LI Huoyin,OGAWA Y.Pore structure of sheared coals and related coalbed methane[J]. Environmental Geology, 2001(40):1455-1461.
    [10]侯泉林,李会军,范俊佳,等.构造煤结构与煤层气赋存研究进展[J].中国科学:地球科学,2012,42(10):1487-1495.HOU Quanlin,LI Huijun,FAN Junjia,et al.Structure and coalbed methane occurrence in tectonically deformed coals[J]. Science China&Earth Sciences,2012,42(10):1487-1495.
    [11]李希建,林柏泉,施天虎.贵州典型矿区突出煤孔隙结构及其吸附特性实验研究[J].采矿与安全工程学报,2013,30(3):415-419.LI Xijian,LIN Baiquan,SHI Tianhu. Experiment study on pore structures of outbrust coal and its adsorption at typical mining fields in Guizhou province[J].Journal of Mining&Saftey Technology,2013,30(3):415-419.
    [12]王振洋,程远平.构造煤与结构煤孔隙特征及瓦斯解吸规律实验[J].煤炭科学技术,2017,45(3):84-88.WANG Zhenyang,CHENG Yuanping.Experiment on pore characteristics and gas desorption law of structural coal and primary structure coal[J]. Coal Science and Technology,2017,45(3):84-68.
    [13]胡彪,程远平,王亮.原生结构煤与构造煤孔隙结构与瓦斯扩散特性研究[J].煤炭科学技术,2018,46(3):103-108.HU Biao,CHENG Yuanping,WANG Liang. Study on porous structure and gas diffusion characteristics of primary structure coal and tectonic coal[J]. Coal Science and Technology,2018,46(3):103-107,24.
    [14]李前贵,康毅力,罗平亚.煤层甲烷解吸-扩散-渗流过程的影响因素分析[J].煤田地质与勘探,2003,31(4):26-29.LI Qiangui,KANG Yili,LUO Pingya.Analysis of factors affecting desorption,diffusion and seepage process of coal bed methane[J].Coal Geology&Exploration,2003,31(4):26-29.
    [15]李云波,张玉贵,张子敏,等.构造煤瓦斯解吸初期特征实验研究[J].煤炭学报,2013,38(1):15-20.LI Yunbo,ZHANG Yugui,ZHANG Zimin,et al. Experimental study on gas desorption of tectonic coal at initial stage[J].Journal of China Coal Society,2013,38(1):15-20.
    [16]琚宜文,姜波,王桂梁,等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005:165-171.
    [17]陈富勇,琚宜文,李小诗,等.构造煤中煤层气扩散-渗流特征及其机理[J].地学前缘,2010,17(1):195-201.CHEN Fuyong,JU Yiwen,LI Xiaoshi,et al. Diffusion-osmosis characteristics of coalbed methane in tectonically deformed coals and their mechanism[J].Earth Science Frontiers,2010,17(1):195-201.
    [18]张群.国外煤层气储层数值模拟技术的现状及发展趋势[J].煤田地质与勘探,2004(8):18-24.ZHANG Qun. Current situation and development trend of numerical simulation technology for coalbed methane reservoirs abroad[J].Coal Geology&Exploration,2004(8):18-24.
    [19] HARPALANI S,CHEN G L.Influence of gas production induced volumetric strain on permeability of coal[J].Geolechnical&Geological Engineering,1997,15(4):303-325.
    [20] ZHU W C,LIU J,SHENG J C,et al.Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(7):971-980.
    [21]朱和保,严家平,王松,等.煤体温度压力变化对瓦斯吸附性能影响的实验研究[J].煤炭技术,2010,29(4):186-188.ZHU Hebao,YAN Jiaping,WANG Song,et al.Experimental study on influence of coal temperature and pressure on gas adsorption performance[J].Coal Technology,2010,29(4):186-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700