轮毂液压辅助驱动车辆蠕行模式控制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Creep Mode Control of Hub-Motor Hydraulic Auxiliary Driving Vehicle
  • 作者:曾小华 ; 刘持林 ; 李文远 ; 宋大凤 ; 李立鑫
  • 英文作者:ZENG Xiaohua;LIU Chilin;LI Wenyuan;SONG Dafeng;LI Lixin;State Key Laboratory of Automotive Simulation and Control, Jilin University;
  • 关键词:轮毂液压辅助驱系统 ; 蠕行模式 ; 无级速比控制 ; 液压泵排量控制
  • 英文关键词:hub-motor hydraulic auxiliary driving system;;creep mode;;continuous speed control;;pump displacement control
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:吉林大学汽车仿真与控制国家重点实验室;
  • 出版日期:2018-12-10 11:09
  • 出版单位:西安交通大学学报
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(51675214,51575221);; 山东省重点研发计划资助项目(2017CXGC0510)
  • 语种:中文;
  • 页:XAJT201903015
  • 页数:8
  • CN:03
  • ISSN:61-1069/T
  • 分类号:109-116
摘要
针对轮毂液压辅助驱动车辆蠕行模式下液压泵排量控制粗放的问题,提出一种蠕行模式控制方法。采用无级变速器的速比控制思想实现液压泵的排量控制,利用AMESim软件搭建轮毂液驱车辆仿真平台,验证蠕行模式控制方法的响应特性和控制效果。仿真结果表明,在系统工作范围内,提出的蠕行模式控制方法可以实现速比的无级控制,进而通过调节发动机工作点实现车辆的最佳经济性运行。该项研究对轮毂液驱车辆控制及实际开发应具有一定的借鉴价值。
        Aiming at the rough control for hydraulic pump displacement in creep mode of hub-motor hydraulic auxiliary driving vehicle, a creep control method is proposed. The idea of speed ratio control of continuously variable transmission is adopted to achieve the displacement control of hydraulic pump. A simulation platform of hub-motor hydraulic driving vehicle is constructed with AMESim software, and the response characteristics and effects of the creep mode control method are verified. Simulation shows that the creep mode control method can realize continuous control of speed ratio within the working range of the hydraulic system, and the best economical operation of the vehicle is achieved via adjusting the working point of the engine.
引文
[1] 刘涛, 姜继海, 孙辉, 等. 静液传动混合动力汽车的研究与进展 [J]. 汽车工程, 2009, 31(7): 586-591. LIU Tao, JIANG Jihai, SUN Hui, et al. Research and progress of the hydrostatic hybrid vehicle [J]. Automotive Engineering, 2009, 31(7): 586-591.
    [2] 曾小华, 李相华, 宋大凤, 等. 一种允许能量回收的液压传动系统: CN 20141006997.6 [P]. 2014-02-28.
    [3] 杨再舜. 重型卡车市场与产品研析 [J]. 汽车与配件, 2014(4): 25-27. YANG Zaishun. Heavy truck market and product analysis [J]. Automobile and Parts Technology, 2014(4): 25-27.
    [4] 曾小华, 李文远, 李广含, 等. 轮毂液驱车辆泵控系统建模 [J]. 浙江大学学报(工学版), 2017, 51(8): 1603-1609. ZENG Xiaohua, LI Wenyuan, LI Guanghan, et al. Modeling of pump in hub-motor hydraulic driving vehicle [J]. Journal of Zhejiang University(Engineering and Technology Edition), 2017, 51(8): 1603-1609.
    [5] BENDER F A, KASYNSKI M, SAWODNY O. Drive cycle prediction and energy management optimization for hybrid hydraulic vehicles [J]. IEEE Transactions on Vehicular Technology, 2013, 62(8): 3581-3592.
    [6] SUN Hui, JIANG Jihai, WANG Xin. Parameters matching and control method of hydraulic hybrid vehicle with secondary regulation technology [J]. Chinese Journal of Mechanical Engineering, 2009, 22(1): 57-63.
    [7] 孙辉. 二次调节静液传动车辆的关键技术及其优化 [D]. 哈尔滨: 哈尔滨工业大学, 2009: 25-34.
    [8] 曾小华, 聂利卫, 王庆年, 等. 轮毂马达液压驱动系统: CN 201120286630.1 [P]. 2015-08-26.
    [9] 李胜, 宋大凤, 曾小华, 等. 重型卡车轮毂马达液压驱动系统建模与仿真 [J]. 农业机械学报, 2012, 43(4): 10-14. LI Sheng, SONG Dafeng, ZENG Xiaohua, et al. Modeling and simulation of hydraulic wheel motor propulsion system for heavy truck [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 10-14.
    [10] 贺辉, 宋大凤, 杨南南, 等. 轮毂马达液驱系统控制与仿真 [J]. 吉林大学学报(工学版), 2012, 42(S1): 27-31. HE Hui, SONG Dafeng, YANG Nannan, et al. Control and simulation of hydraulic in-wheel motor propulsion system [J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(S1): 27-31.
    [11] 肖聚亮, 楫骏, 姚永胜, 等. 灰色预测在FAST液压促动器中的应用 [J]. 天津大学学报(自然科学与工程技术版), 2016, 49(2): 178-185. XIAO Juliang, JI Jun, YAO Yongsheng, et al. Application of grey predictor based algorithm to hydraulic actuator used in FAST project [J]. Journal of Tianjin University(Natural Science and Engineering Technology Edition), 2016, 49(2): 178-185.
    [12] 李相华. 重型牵引车液压轮毂马达系统辅助驱动与制动控制 [D]. 吉林: 吉林大学, 2015: 76-77.
    [13] BASELEY S, EHRET C, GREIF E. et al. Hydraulic hybrid systems for commercial vehicles [C]//SAE 2007 Commercial Vehicle Engineering Congress and Exhibition. Rosemont, USA: SAE, 2007: 2007-01-4150.
    [14] SINCLAIR C. Hydrostatic drive: 6675575 [P]. 2004-01-13.
    [15] Poclain Hydraulics. World leading specialist in hydrostatic transmission [EB/OL]. [2018-05-16]. http: //www.poclain-hydraulics.com/en/systems/trucks.
    [16] 李晓丹. 模糊PID控制器的设计研究 [D]. 天津: 天津大学, 2005: 30-35.
    [17] ZHANG M, BORJA P, ORTEGA R, et al. PID passivity-based control of port-Hamiltonian systems [J]. IEEE Transactions on Automatic Control, 2018, 63(4): 1032-1044.
    [18] 李美丽, 闫秀英, 严铭姣, 等. 基于模糊PID的变风量空调末端控制器设计 [J]. 工业控制计算机, 2017, 30(12): 59-60. LI Meili, YAN Xiuying, YAN Mingjiao, et al. Design of variable air volume terminal controller based on fuzzy PID [J]. Industrial Control Computer, 2017, 30(12): 59-60.
    [19] MORADI H, SETAYESH H, ALASTY A. PID-fuzzy control of air handing units in the presence of uncertainty [J]. International Journal of Thermal Sciences, 2016, 109: 123-135.
    [20] 杨航, 刘凌, 阎治安, 等. 双闭环Buck变换器系统模糊PID控制 [J]. 西安交通大学学报, 2016, 50(4): 35-40. YANG Hang, LIU Ling, YAN Zhi’an, et al. Fuzzy PID control of double closed loop buck converter system [J]. Journal of Xi’an Jiaotong University, 2016, 50(4): 35-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700