基于模糊逻辑控制的鱼塘养殖精准投饲系统设计与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and experiment of precision feeding system of pond culturing based on fuzzy-logic control
  • 作者:赵思琪 ; 丁为民 ; 张建凯
  • 英文作者:ZHAO Si-qi;DING Wei-min;ZHANG Jian-kai;College of Engineering, and Jiangsu Key Laboratory for Intelligent Agricultural Equipment, Nanjing Agricultural University;
  • 关键词:鱼塘养殖 ; 精准投饲 ; 模糊逻辑控制 ; 水质监测 ; 饵料系数 ; 溶解氧饱和度 ; 温度
  • 英文关键词:fishpond culture;;precision feeding;;fuzzy logic control;;water quality monitoring;;feed conversion ratio;;dissolved oxygen saturation;;temperature
  • 中文刊名:NXDH
  • 英文刊名:Research of Agricultural Modernization
  • 机构:南京农业大学工学院/江苏省智能化农业装备重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:农业现代化研究
  • 年:2019
  • 期:v.40;No.232
  • 基金:江苏省农机三新工程项目(NJ2013-12);; 国家自然科学基金青年项目(31401778)~~
  • 语种:中文;
  • 页:NXDH201903019
  • 页数:10
  • CN:03
  • ISSN:43-1132/S
  • 分类号:173-182
摘要
为解决现有鱼塘养殖投饲模式粗放,养殖效率低的问题,基于模糊逻辑控制理论,设计一种鱼塘养殖精准投饲系统,采用Nash-Sutcliffe效率系数(NS)和均方根误差(RMSE)对传统投饲模式和精准投饲模式的决策性能进行评估,利用池塘试验,以鱼生长率、特定生长率和饵料系数为评价指标,分析了不同投饲模式对鱼生长的影响。设计的鱼塘养殖精准投饲系统主要包括水质监测系统、投喂决策控制系统和执行系统3个部分。首先通过水质监测系统获取投饲区养殖水体水质参数溶解氧饱和度(DO)和温度(T),结合投饲决策模型计算出目标所需投饲量,然后通过模块子程序控制驱动执行机构步进电机,带动齿轮齿条运动以调控供料斗开度,并采用测角法反馈饲料流量信息,调整目标投饲量,实现精准按需投饲作业。试验结果表明,精准投饲模式与传统投饲模式相比,NS值由-0.772提高至0.903,RMSE降低了19.671,鱼生长参数和产量不存在显著差异性(P>0.05),但饵料系数同比降低9.23%,存在显著性差异性(P<0.05)。研究表明,精准投饲模式系统决策控制性能良好,在不影响鱼类生长的情况下,有效提高了饵料利用率,降低饲料浪费,达到精准按需投饲的目的。
        In outdoor pond culturing systems, formulated feed is the most main expenditure. Improving the feeding efficiency is of great significance for reducing economic losses and alleviating ecological pollution. However, artificial feeding control remained the most widely applied method for aquaculture feeding systems, and usually provided excess feed to obtain profitable growth rates based on observation and experience. Thus, the objective of this paper was to develop an automatic feeding decision-making system based on the fuzzy control method to solve the problem of inefficiency. The specific principles of this system are as follows. Firstly, the dissolved oxygen saturation(DO) and temperature(T) in the feeding area are obtained by the water quality monitoring system, and transfer it to controller.Then, combining with feeding strategy to calculate the theoretical feeding, and adjust opening by controlling stepper motor. And then, set the inclination sensor to feedback opening information to controller. Furthermore, the performance of the precision feeding system and artificial feeding system were evaluated by the Nsah-Sutcliffe efficiency coefficient(NS), root mean square error(RMSE), and fish growth parameters, respectively. The results indicated that the precision feeding system was superior to that of the artificial feeding system for forecasting feed decisions, the NS was promoted-0.772 to 0.903 and the RMSE was reduced by 19.671. However, there was no significant differences in promoting fish growth(P>0.05), whereas the feed conversion rate is reduced by 9.23%. Consequently, applied the precision feeding system can significantly improve economic and environment efficiency, and may can guide to develop the new equipment or control systems in some other culture systems.
引文
[1]Tacona G J,Forster I P.Aquafeeds and the environment:Policy implications[J].Aquaculture,2003,226(1):181-189.
    [2]Rola W R,Hasan M R.Economics of aquaculture feeding practices:A synthesis of case studies undertaken in six Asian countries[J].FAO Fisheries Technical Paper,2007,26(8):1154-1160.
    [3]Chang C M,Fang W,Jao R C,et al.Development of an intelligent feeding controller for indoor intensive culturing of eel[J].Aquacultural Engineering,2005,32(2):343-353.
    [4]葛一健.我国投饲机产品的发展与现状分析[J].渔业现代化,2010,38(4):63-65.Ge Y J.Analysis of development and present situation of feeding machine in China[J].Fishery Modernization,2010,38(4):63-65.
    [5]Buentello J A,Gatlin D M,Neill W H.Effects of water temperature and dissolved oxygen on daily feed consumption,feed utilization and growth of channel catfish(Ictalurus punctatus)[J].Aquaculture,2000,182(3/4):339-352.
    [6]Niklitschek E J,Secor D H.Dissolved oxygen,temperature and salinity effects on the ecophysiology and survival of juvenile atlantic sturgeon in estuarine waters:I.laboratory results[J].Journal of Experimental Marine Biology&Ecology,2009,381:S150-S160.
    [7]Bórquez-lopez R A,Casillas-hernandez R,Lopez-elias J A,et al.Improving feeding strategies for shrimp farming using fuzzy logic,based on water quality parameters[J].Aquacultural Engineering,2018,81:38-45.
    [8]Carbajal-hernández J J,Sánchez-fernández L P,Villa-vargas LA,et al.Water quality assessment in shrimp culture using an analytical hierarchical process[J].Ecological Indicators,2013,29:148-158.
    [9]Rowland S J,Allan G L,Mifsud C,et al.Development of a feeding strategy for silver perch,Bidyanus bidyanus(Mitchell),based on restricted rations[J].Aquaculture Research,2005,36(14):1429-1441.
    [10]Mattos B O D,Barreto K A,Braga L G T,et al.Self-feeder systems and infrared sensors to evaluate the daily feeding and locomotor rhythms of Pirarucu(Arapaima gigas)cultivated in outdoor tanks[J].Aquaculture,2016,457:118-123.
    [11]徐志强,王涛,鲍旭腾,等.池塘养殖自动投饲系统远程精准化升级与验证[J].中国工程机械学报,2015,13(3):272-276.Xu Z Q,Wang T,Bao X T,et al.Accurate upgrading and verification on automatic remote feeding system for pond culture[J].Chinese Journal of Construction Machinery,2015,13(3):272-276.
    [12]陈晓龙,田昌凤,杨家朋,等.高密度养殖池塘自动气力投饲机的设计实验[J].渔业现代化,2016,43(5):18-22.Chen X L,Tian C F,Yang J P,et al.Research on pneumatic automatic feeding machine for intensive pond aquaculture[J].Fishery Modernization,2016,43(5):18-22.
    [13]许艳,罗伟,王春芳.投饲率对草鱼生长、体组成和能量收支的影响[J].淡水渔业,2016,46(5):89-95.Xu Y,Luo W,Wang C F.Effects of ration levels on growth,body composition and energy budgets of grass carp,Ctenopharyngodon idella[J].Freshwater Fisheries,2016,46(5):89-95.
    [14]马从国,赵德安,王建国,等.基于无线传感器网络的水产养殖池塘溶解氧智能监控设备[J].农业工程学报,2015,31(7):193-200.Ma C G,Zhao D A,Wang J G,et al.Intelligent monitoring system for aquaculture dissolved oxygen in pond based on wireless sensor network[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(7):193-200.
    [15]Lee P G,Lea R N,Dohmann E,et al.Denitrification in aquaculture systems:An example of a fuzzy logic control problem[J].Aquacultural Engineering,2000,23(1):37-59.
    [16]Gutiérrez-estrada J C,Pulido-calvo I,Delarosa I,et al.Modeling inflow rates for the water exchange management in semi-intensive aquaculture ponds[J].Aquacultural Engineering,2012,48:19-30.
    [17]谷坚,门涛,刘兴国,等.基于氧传质的池塘机械增氧节能技术[J].农业工程学报,2011,27(11):120-125.Gu J,Men T,Liu X G,et al.Energy-saving technology for pond mechanical aeration based on oxygen mass transfer[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(11):120-125.
    [18]Sotozarazúa G M,Ricogarcía E,Ocampo R,et al.Fuzzy-logicbased feeder system for intensive tilapia production(Oreochromis niloticus)[J].Aquaculture International,2010,18(3):379-391.
    [19]王武.鱼类增养殖学[M].北京:中国农业出版社,2000:23-36.Wang W.Culture and Enhancement of Fishes[M].Beijing:China Agriculture Press,2000:23-36.
    [20]张敬旺.草鱼养殖池塘溶氧收支平衡及关键影响因子研究[D].上海:上海海洋大学,2012.Zhang J W.Study on the oxygen budgets of grass carp ponds and its critical impact factors[D].Shanghai:Shanghai Ocean University,2012.
    [21]徐丽英,于承先,邢斌,等.基于PDA的集约化水产饲料投喂决策系统[J].农业工程学报,2008,24(S2):250-254.Xu L Y,Yu C X,Xing B,et al.PDA-based aquaculture feeding decision support system[J].Transactions of the Chinese Society of Agricultural Engineering,2008,24(S2):250-254.
    [22]Zhang M F,Xue H P,Wang L Z,et al.A decision support system for fish feeding based on hybrid reasoning[J].IFIP Advances in Information&Communication Technology,2013,392:19-26.
    [23]Niklitschek E J,Secor D H.Dissolved oxygen,temperature and salinity effects on the ecophysiology and survival of juvenile Atlantic sturgeon in estuarine waters:II.Model development and testing[J].Journal of Experimental Marine Biology&Ecology,2009,381:S161-S172.
    [24]An T D,Johanw S,Annea V D,et al.Effects of oxygen concentration and body weight on maximum feed intake,growth and hematological parameters of Nile tilapia,Oreochromis niloticus[J].Aquaculture,2008,275:152-162.
    [25]Liu X J,Sha Z Y,Wang C F,et al.A web-based combined nutritional model to precisely predict growth,feed requirement and waste output of gibel carp(Carassius auratus gibelio)in aquaculture operations[J].Aquaculture,2018,492,335-348.
    [26]Cui Y B,Chen S L,Wang S M.Effect of temperature on the energy budget of the grass carp,Ctenopharyngodon idellus Val[J].Oceanologiaet Limnologia Sinica.1995,26(2):169-174.
    [27]Chowdhury M A K,Siddiqui S,Hua K,et al.Bioenergetics-based factorial model to determine feed requirement and waste output of tilapia produced under commercial conditions[J].Aquaculture,2013,410/411:138-147.
    [28]Dumas A,France J,Bureau D P.Evidence of three growth stanzas in rainbow trout(Oncorhynchus mykiss)across life stages and adaptation of the thermal-unit growth coefficient[J].Aquaculture,2007,267:139-146.
    [29]刘晓娟,罗伟,王春芳,等.运用生物能量学模型预测草鱼生长、饲料需求和污染排放[J].水产学报,2018,42(6):950-966.Liu X J,Luo W,Wang C F,et al.Establishment of bioenergy models to predict growth,feed requirement and waste output of grass carp(Ctenpharyngodon idella)[J].Journal of Fisheries of China,2018,42(6):950-967.
    [30]陈满,鲁伟,汪小旵,等.基于模糊PID的冬小麦变量追肥优化控制系统设计与试验[J].农业机械学报,2016,47(2):71-76.Chen M,Lu W,Wang X H,et al.Design and experiment of optimization control system for variable fertilization in winter wheat field based on fuzzy PID[J].Transactions of the Chinese Society of Agricultural Machinery,2016,47(2):71-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700