C/N自掺杂提高g-C_3N_4光响应的理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical study onoptical response improving of g-C_3N_4 by C/N self-doping
  • 作者:李宗宝 ; 王霞 ; 石维
  • 英文作者:LI Zong-Bao;WANG Xia;SHI Wei;School of Material and Chemical Engineering, Tongren University;
  • 关键词:g-C_3N_4 ; C/N自掺杂 ; 电子结构 ; 形成能
  • 英文关键词:g-C_3N_4;;C/N self-doping;;Electronic structure;;Formation energy
  • 中文刊名:SCDX
  • 英文刊名:Journal of Sichuan University(Natural Science Edition)
  • 机构:铜仁学院材料与化学工程学院;
  • 出版日期:2019-07-08 10:22
  • 出版单位:四川大学学报(自然科学版)
  • 年:2019
  • 期:v.56
  • 基金:贵州省自然科学基金(黔科合基础[2016]1150,黔科合平台人才[2017]5604,化学工程与技术贵州省重点学科,黔学位合字ZDXK[2017]8号,黔教合人才团队字[2015]67号)
  • 语种:中文;
  • 页:SCDX201904025
  • 页数:8
  • CN:04
  • ISSN:51-1595/N
  • 分类号:161-168
摘要
依托半导体的光催化性能对环境中的污染物进行降解是解决环境污染的一种有效途径.类石墨烯相C_3N_4(g-C_3N_4)具有稳定的化学性能和独特的电子结构,在光催化领域展现出巨大的应用潜力.采用第一性原理,本文对不同比例的C/N自掺杂g-C_3N_4的晶体结构和电子结构进行了探究.通过不同掺杂位形成能的比较,探究了单原子替位掺杂和多原子表面转移掺杂的最优化结构.通过电子结构的比较发现:C原子自掺杂较N原子自掺杂形成能更低,易于在实验中实现;随N掺杂比例的增加, g-C_3N_4的吸收光谱向红外移动; C掺杂比例为1/12时对可见光的响应最强.该理论结果除获得掺杂的微观机理解释,亦利于对后续实验的合成提供理论依据和指导.
        It becomes an effective way to solve environmental pollution by using photocatalysis of semiconductors. For the reasons of chemical stabilization and unique electronic structure, polymeric graphitic carbon nitride(g-C_3N_4) has been used extensively in the field of photocatalysis. Using the first principle calculations, optimized crystal structures and electronic structures are calculated for the doped cases. From comparisons of formation energies, the most stable crystal structures are obtained for monatomic substitutional doping cases and polyatomic surface transfer doping ones. The results reveal that C/g-C_3N_4 can be easier synthetized than N/g-C_3N_4 because of its lower formation energy. The results show that the best doping ratio of C is 1/12 for the reason of high visible light response. The calculated results are helpful to provide theoretical basis and instruction for subsequent synthesis in addition to the microscopic mechanism of doping.
引文
[1]Wang H,Zhang L,Chen Z,et al.Semiconductor heterojunction photocatalysts:design,construction,and photocatalytic performances[J].Chem Soc Rev,2014,43:5234.
    [2]刘冷,杜意恩,李军,等.水热法制备ZnTiO3/TiO2复合光催化剂及其光催化性能研究[J].四川大学学报:自然科学版,2018,55:827.
    [3]Chen X,Liu L,Yu P Y,et al.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J].Science,2011,331:746.
    [4]蔡亚平,李卫,冯良桓,等.化学水浴法制备发面积CdS薄膜及其光伏应用[J].物理学报,2009,58:438.
    [5]Wang X C,Maeda K,Thomas A,et al.A metalfree polymeric photocatalyst for hydrogen production from water under visible light[J].Nat Mater,2009,8:76.
    [6]Yan S C,Li Z S,Zou Z G.Photodegradation of rhodamine b and methyl orange over boron-doped gC3N4under visible light irradiation[J].Langmuir,2010,26:3894.
    [7]Liu G,Niu P,Sun C H,et al.Unique electronic structure induced high photoreactivity of sulfurdoped graphitic C3N4[J].J Am Chem Soc,2010,132:11642.
    [8]Chen G,Gao S P.Dissociations of O2molecules on ultrathin Pb(111)films:first-principles plane wave calculations[J].Chin Phys B,2012,21:380.
    [9]Fu J,Zhu B,Jiang C,et al.Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2reduction activity[J].Small,2017,13:1603938.
    [10]Zuo F,Wang L,Wu T,et al.Self-doped Ti 3+enhanced photocatalyst for hydrogen production under visible light[J].J Am Chem Soc,2010,132:11856.
    [11]顾芳,孙亚飞,张加宏,等.掺杂Si/SiO2界面电子结构与光学性质的第一性原理研究[J].原子与分子物理学报,2018,35:853.
    [12]Xie K,Umezawa N T,Zhang N,et.al.Self-doped SrTiO3-δphotocatalyst with enhanced activity for artificial photosynthesis under visible light[J].Energy Environ Sci,2011,4:4211.
    [13]Li Y,Wu S,Huang L,et al.Synthesis of carbondoped g-C3N4composites with enhanced visible-light photocatalytic activity[J].Mater Lett,2014,137:281.
    [14]Oh J S,Kim K N,Yeom G Y J.Graphene doping methods and device applications[J].Nanosci Nanotechnol,2014,14:1120.
    [15]Dong G,Zhao K,Zhang L.Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4[J].Chem Commun,2012,48:6178.
    [16]Zhao Z,Sun Y,Dong F,et al.Template synthesis of carbon self-doped g-C3N4with enhanced visible to near-infrared absorption and photocatalytic performance[J].RSC Adv,2015,5:39549.
    [17]Panneri S,Ganguly P,Mohan M,et al.Photoregenerable,bifunctional granules of carbon-doped gC3N4as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic[J].ACS Sustain Chem Eng,2017,5:1610.
    [18]Liu G,Li X,Ganesan P,et al.Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon[J].Appl Cataly B:Enviro,2009,93:156.
    [19]Chen X,Burda C.The electronic origin of the visible-light absorption properties of C-,N-and S-doped TiO2 Nanomaterials[J].J Am Chem Soc,2008,130:5018.
    [20]张春红,张忠政,闫万珺,等.稀土Er掺杂β-FeSi2光电捍性研究[J].四川大学学报:自然科学版,2016,53:1335.
    [21]禹忠,党忠,柯熙政,等.N/B掺杂石墨烯的光学与电学性质[J].物理学报,2016,65:248103.
    [22]Yu H,Shang L,Bian T,et al.Nitrogen-doped porous carbon nanosheets templated from g-C3N4as metal-free electrocatalysts for efficient oxygen reduction reaction[J].Adv Mater,2016,28:5080.
    [23]Perdew J P,Burke K M.Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77:3865.
    [24]Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations[J].Phys Rev B,1998,13:5188.
    [25]Kresse G,Furthermuller J.Efficient iterative schemes for ab initio total-energy calculations using aplane-wave basis set[J].Phys Rev B,1996,54:11169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700