超滑表面(LIS/SLIPS)的设计与制备研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress for Desigh and Fabrication of LIS/SLIPS
  • 作者:吴德权 ; 张达威 ; 刘贝 ; 李晓刚
  • 英文作者:WU De-quan;ZHANG Da-wei;LIU Bei;LI Xiao-gang;Institute for Advanced Materials and Technology, University of Science and Technology Beijing;
  • 关键词:超滑表面 ; 灌注 ; 超疏水 ; 制备工艺 ; cloak效应 ; 失效
  • 英文关键词:lubricant infused porous surface;;liquid impregnated surface;;superhydrophobic;;preparation process;;cloak effect;;failure
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:北京科技大学新材料技术研究院;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家重点研发计划(2016YFE0203600);; 国家自然科学基金(51771029)~~
  • 语种:中文;
  • 页:BMJS201901014
  • 页数:12
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:103-114
摘要
仿生猪笼草结构的超滑表面(LIS/SLIPS)是一种通过将低表面能液体注入微纳孔而形成的固液复合结构,其具有优异的疏液、不粘附、自修复等特性,成为表界面领域的研究热点。综述了超滑表面制备过程中的经验、争议、误解与盲点,并讨论了超滑表面可能产生的失效。通过对比超滑表面与超疏水涂层结构的差异,分析了超滑涂层在滑动性、稳定性、自修复性等方面与超疏水的联系、区别以及超滑涂层表面四个相态间的作用关系,总结出超滑涂层设计的基本物理模型。从超滑涂层制备工艺,包括基底制备、基底修饰、润滑油选择、润滑油灌注等四个方面,详细梳理了超滑表面制备要点及选材标准,并讨论了超滑表面制备工艺存在的诸多争议。研究发现,超滑表面多孔结构的粗糙度对于形成稳定界面至关重要,有着其特殊的尺寸范围。为了追求疏液性能而选取表面能过低的润滑油不可取,过低表面能反而会引起cloak效应,最终导致油膜流失,而如何将润滑油完全填充到多孔结构中也被许多学者忽视,并且不合理的设计制备以及服役环境也将造成超滑表面的失效。最后展望了未来超滑表面制备应朝着工艺简化、性能稳定长效、多功能化、智能化方向发展。
        Inspired by structure of Nepenthes plants, a new designed solid-liquid surface called lubricant infused surface(LIS) or slippery liquid infused porous surface(SLIPS) has been invented by infusing lubricant with low surface energy into porous micro/nanosubstrate. The lubricant infused surface(LIS) or slippery liquid infused porous surface(SLIPS) is becoming a new research hotspot in surface interface field due to excellent properties like superhydrophobic, inadhesion, self-healing, etc. The achievement, controversy and blind spots in designing and fabricating LIS/SLIPS as well as its degradation process were reviewed and the failure possibly caused by LIS/SLIPS was also discussed. By comparing the differences between LIS/SLIPS and superhydrophobic in microstructure, the correlation and distinguish of properties in sliding, durability, self-healing, and transparency as well as the interaction relation among four phases on LIS/SLIPS coating surface were analyzed. Then, a basicphysical model was summarized to guide the design of LIS/SLIPS. The essential points in preparation process and material choice of LIS/SLIPS were analyzed from four parts, substrate preparation, modification, selection of lubricant, and lubricant impregnation. The problems in the fabrication process of LIS/SLIPS were also discussed. The roughness of porous substrate on LIS/SLIPS was important to the formation of stable interface and had the special value range. It was unwise to select lubricant with lower surface energy for hydrophobic performance, because lower surface energy could lead to the cloaking phenonmen and final deteraration. Beside, the complete impregnation of lubricant in porous substrate was usually ignored by researchers. Unreasonable design and serve inviroment could also lead to failure of LIS/SLIPS. LIS/SLIPS is expected to develop to simple process, stable property, multifunction, and smarting in the future.
引文
[1]WONG T S,KANG S H,TANG S K,et al.Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J].Nature,2011,477(7365):443-447.
    [2]AMINI S,KOLLE S,PETRONE L,et al.Preventing mussel adhesion using lubricant-infused materials[J].Science,2017,357(6352):668-673.
    [3]SU B,TIAN Y,JIANG L.Bioinspired interfaces with superwettability:From materials to chemistry[J].Journal of the American chemical society,2016,138(6):1727-1748.
    [4]DENG X,MAMMEN L,BUTT H J,et al.Candle soot as a template for a transparent robust superamphiphobic coating[J].Science,2012,335(6064):67-70.
    [5]LU Y,SATHASIVAM S,SONG J,et al.Repellent materials:Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.
    [6]LIU Y Y,CHEN X Q,XIN J H.Can superhydrophobic surfaces repel hot water?[J].Journal of materials chemistry,2009,19(31):5602-5611.
    [7]MAZUMDER S,RD F J,DIETRICH A M,et al.Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation[J].Biofouling,2010,26(3):333-339.
    [8]SIGAL G B,MILAN M,WHITESIDES G M.Effect of surface wettability on the adsorption of proteins and detergents[J].Journal of the American chemical society,1998,120(14):3464-3473.
    [9]LóPEZMORENO A,SEPúLVEDASáNCHEZ J D,GU-ZMáN EM M A,et al.Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones:Influence of calcium on EPS production and biofilm formation by these isolates[J].Biofouling,2014,30(5):547-560.
    [10]FEDERLE W,RIEHLE M,CURTIS A S G,et al.An integrative study of insect adhesion:Mechanics and wet adhesion of pretarsal pads in ants[J].Integrative&comparative biology,2002,42(6):1100-1106.
    [11]ZHANG J,GU J,TU J.Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B mgalloy protection[J].ACS applied materials&interfaces,2017,9(12):11247-11257.
    [12]XIAO R,MILJKOVIC N,ENRIGHT R,et al.Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer[J].Scientific reports,2013,3(6):1988.
    [13]EPSTEIN A K,WONG T S,BELISLE R A,et al.Liquidinfused structured surfaces with exceptional anti-biofouling performance[J].Proceedings of the national academy of sciences,2012,109(33):13182-13187.
    [14]ZHANG Chun-hui,ZHANG Bo,MA Hong-yu,et al.Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J].ACS nano,2018,12(2):2048-2055.
    [15]TOKAREV I,MINKO S.Multiresponsive,hierarchically structured membranes:New,challenging,biomimetic materials for biosensors,controlled release,biochemical gates,and nanoreactors[J].Advanced materials,2010,21(2):241-247.
    [16]SMITH J D,GOUNDEN C,YAGUE J,Methods and articles for liquid-impregnated surfaces for the inhibition of vapor or gas nucleation:WO,WO/2014/145586[P].2014.
    [17]PANT R,UJJAIN S K,NAGARAJAN A K,et al.Enhanced slippery behavior and stability of lubricating fluid infused nanostructured surfaces[J].European physical journal applied physics,2016,75(1):11301-11320.
    [18]HOWELL C,VU T L,JOHNSON C P,et al.Stability of surface-immobilized lubricant interfaces under flow[J].Chemistry of materials,2016,27(5):1792-1800.
    [19]SETT S,YAN X,BARAC G,et al.Lubricant-infused surfaces for low-surface-tension fluids:Promise versus reality[J].ACS applied materials&interfaces,2017,9(41):36400-36408.
    [20]WEI C,FADEEV A Y,MENG C H,et al.Ultrahydrophobic and ultralyophobic surfaces:Some comments and examples[J].Langmuir,1999,15(10):3395-3399.
    [21]DELMAS M,MONTHIOUX M,ONDAR U T.Contact angle hysteresis at the nanometer scale[J].Physical review letters,2011,106(13):136102-136107.
    [22]ANAND S,PAXSON A T,DHIMAN R,et al.Enhanced condensation on lubricant-impregnated nanotextured surfaces[J].Acs nano,2012,6(11):10122-10129.
    [23]MILJKOVIC N,ENRIGHT R,WANG E N.Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces[J].Acs nano,2012,6(2):1776-1785.
    [24]DOU R,CHEN J,ZHANG Y,et al.Anti-icing coating with an aqueous lubricating layer[J].Acs appl mater interfaces,2014,6(10):6998-7003.
    [25]LIAO Rui-jin,ZUO Zhi-ping,GUO Chao,et al.Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property[J].Applied surface science,2014,317:701-709.
    [26]KREDER Ml J,ALVARENGA J,KIM P,et al.Design of anti-icing surfaces:Smooth,textured or slippery?[J].Nature,2016,1(1):1-15.
    [27]SUBRAMANYAM S B,RYKACZEWSKI K,VARANASIK K.Ice adhesion on lubricant-impregnated textured surfaces[J].Langmuir the acs journal of surfaces&colloids,2013,29(44):13414-13418.
    [28]LIN Zhu,XUE Jian,WANG Yuan-yi,et al.Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane[J].Applied materials&interfaces,2013,5(10):4053-4062.
    [29]CHARPENTIER T V,NEVILLE A,BAUDIN S,et al.Liquid infused porous surfaces for mineral fouling mitigation[J].Journal of colloid&interface science,2015,444:81-86.
    [30]XIAO L,LI J,MIESZKIN S,et al.Slippery liquid-infused porous surfaces showing marine antibiofouling properties[J].Acs appl mater interfaces,2013,5(20):10074-10080.
    [31]HOWELL C,VU T L,LIN Je J,et al.Self-replenishing vascularized fouling-release surfaces[J].Acs appl mater interfaces,2014,6(15):13299-13307.
    [32]WU W,DECONINCK A,LEWIS J A.Omnidirectional printing of 3D microvascular networks[J].Advanced materials,2011,23(24):H178-H183.
    [33]SOLOMON B R,KHALIL K S,VARANASI K K.Drag eeduction using lubricant-impregnated surfaces in viscous laminar flow[J].Langmuir,2014,30(36):10970-10976.
    [34]WANG Yang,ZHANG Hai-feng,LIU Xiao-wei,et al.Slippery liquid-infused substrates:A versatile preparation,unique anti-wetting and drag-reduction effect on water[J].Journal of materials chemistry A,2016,4(7):2524-2529.
    [35]CARLSON A,KIM P,AMBERG G,et al.Short and long time drop dynamics on lubricated substrates[J].Epl,2013,104(3):34008-340020.
    [36]ZHANG Jun-ping,WANG Ai-qin,SEEGER S.Nepenthes pitcher inspired anti-wetting silicone nanofilaments coatings:Preparation,unique anti-wetting and self-cleaning behaviors[J].Advanced functional materials,2014,24(8):1074-1080.
    [37]DAMLE V G,TUMMALA A,CHANDRASHEKAR S,et al.'Insensitive'to touch:Fabric-supported lubricantswollen polymeric films for omniphobic personal protection gear[J].ACS applied materials&interfaces,2015,7(7):4224-4232.
    [38]MANABE K,KYUNG K H,SHIRATORI S.Biocompatible slippery fluid-infused films composed of chitosan and alginate via layer-by-layer self-assembly and their antithrombogenicity[J].Acs applied materials&interfaces,2015,7(8):4763-4771.
    [39]MANNA U,LYNN D M.Fabrication of liquid-infused surfaces using reactive polymer multilayers:Principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces[J].Advanced materials,2015,27(19):3007-3012.
    [40]LEE C,KIM H,NAM Y.Drop impact dynamics on oil-infused nanostructured surfaces[J].Langmuir the acs journal of surfaces&colloids,2014,30(28):8400-8407.
    [41]KIM P,WONG T S,ALVARENGA J,et al.Liquidinfused nanostructured surfaces with extreme anti-ice and anti-frost performance[J].Acs nano,2012,6(8):6569-6577.
    [42]ROWTHU S,HOFFMANN P.Perfluoropolyether-impregnated mesoporous alumina composites overcome the dewetting-tribological properties trade-off[J].Acs applied materials&interfaces,2018,10(12):10560-10570.
    [43]REYSSAT M,ISHINO C,REYSSAT E,et al.Wicking within forests of micro-pillars[J].Epl,2007,79(5):56005-56018.
    [44]LI Yang,LI Long,SUN Jun-qi.Bioinspired self-healing superhydrophobic coatings[J].Angewandte chemie,2010,122(35):6265-6269.
    [45]JING W,KATO K,BLOIS A P,et al.Bioinspired omniphobic coatings with a thermal self-repair function on industrial materials[J].Acs applied materials&interfaces,2016,8(12):8265-8271.
    [46]ZHANG Yun-dian,YE Xue-ming.Oil-bearing structures on the working surface of thin-wall cylinder liners[J].Mechanical&electrical engineering magazine,1999,6:47-48.
    [47]PRESTON D J,SONG Y,LU Zheng-mao,et al.Design of lubricant infused surfaces[J].Acs applied materials&interfaces,2017,48:42383-42392.
    [48]SMITH J D,DHIMAN R,ANAND S,et al.Droplet mobility on lubricant-impregnated surfaces[J].Soft matter,2013,9(6):1772-1780.
    [49]WEISENSEE P B,WANG Yun-bo,QIAN Hong-liang,et al.Condensate droplet size distribution on lubricantinfused surfaces[J].International journal of heat&mass transfer,2017,109:187-199.
    [50]WEI C,ZHANG G,ZHANG Q,et al.Silicone oil-infused slippery surfaces based on sol-gel process-induced nanocomposite coatings:A facile approach to highly stable bioinspired surface for biofouling resistance[J].Acs applied materials&interfaces,2016,8(50):34810-34819.
    [51]WANG H,XUE Y,DING J,et al.Durable,self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane[J].Angewandte chemie,2011,123(48):11635-11638.
    [52]PFRUENDER H,JONES R,WEUSTERBOTZ D.Water immiscible ionic liquids as solvents for whole cell biocatalysis[J].Journal of biotechnology,2006,124(1):182-190.
    [53]VOROBEV A.Dissolution dynamics of miscible liquid/liquid interfaces[J].Current opinion in colloid&interface science,2014,19(4):300-308.
    [54]RYKACZEWSKI K,LANDIN T,WALKER M L,et al.Direct imaging of complex nano to microscale interfaces involving solid,liquid,and gas phases[J].Acs nano,2012,6(10):9326-9334.
    [55]SCHELLENBERGER F,XIE J,ENCINAS N,et al.Direct observation of drops on slippery lubricant-infused surfaces[J].Soft matter,2015,11(38):7617-7626.
    [56]RYKACZEWSKI K,PAXSON A T,STAYMATES M,et al.Dropwise condensation of low surface tension fluids on omniphobic surfaces[J].Sci rep,2014,4(3):4158-4164.
    [57]KIM J H,ROTHSTEIN J P.Droplet impact dynamics on lubricant-infused superhydrophobic surfaces:The role of viscosity ratio[J].Langmuir,2016,32(40):10166-10176.
    [58]MIRANDA D F,URATA C,MASHEDER B,et al.Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity[J].Apl materials,2014,2(5):644-648.
    [59]YEONG Y H,WANG C,KYNNE J,et al.Oil-infused superhydrophobic silicone material for low ice adhesion with long-term infusion stability[J].ACS applied materials interfaces,2016,8:32050-32059.
    [60]ZHANG Jun-ping,WU Lei,LI Bu-cheng,et al.Evaporation-Induced transition from nepenthes pitcher-inspired slippery surfaces to lotus leaf-inspired superoleophobic surfaces[J].Langmuir,2014,30(47):14292-14299.
    [61]COURBIN L,DENIEUL E,DRESSAIRE E,et al.Imbibition by polygonal spreading on microdecorated surfaces[J].Nature materials,2007,6(9):661-664.
    [62]EDUOK U,FAYE O,SZPUNAR J.Recent developments and applications of protective silicone coatings:A review of PDMS functional materials[J].Progress of organic coating,2017,111:124-163.
    [63]JUCHNIEWICZ M,STADNIK D,BIESIADA K,et al.Porous crosslinked PDMS-microchannels coatings[J].Sensors&actuators B chemical,2007,126(1):68-72.
    [64]WANG P,LI T,ZHANG D,et al.Fabrication of non-wetting surfaces on zinc surface as corrosion barrier[J].Corrosion science,2017,128:110-119.
    [65]LEE J,SHIN S,JIANG You-hua,et al.Oil-impregnated nanoporous oxide layer for corrosion protection with selfhealing[J].Advanced functional materials,2017,27(15):1606040-1606051.
    [66]WANG Y,SHI Y,PAN L,et al.Multifunctional superhydrophobic surfaces templated from innately microstructured hydrogel matrix[J].Nano letters,2014,14(8):4803-4809.
    [67]YANG Sheng-sheng,QIU Ri,SONG Hong-qing,et al.Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate:Preparation and corrosion protection application[J].Applied surface science,2015,328:491-500.
    [68]QIU Ri,ZHANG Qian,WANG Peng,et al.Fabrication of slippery liquid-infused porous surface based on carbon fiber with enhanced corrosion inhibition property[J].Colloids&surfaces A physicochemical&engineering aspects,2014,453(1):132-141.
    [69]OGIHARA H,XIE J,OKAGAKI J,et al.Simple method for preparing superhydrophobic paper:Spray-deposited hydrophobic silica nanoparticle coatings exhibit high waterrepellency and transparency[J].Langmuir,2012,28(10):4605-4608.
    [70]KIM P,KREDER M J,ALVARENGA J,et al.Hierarchical or not?Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates[J].Nano letters,2013,13(4):1793-1799.
    [71]MA W,HIGAKI Y,OTSUKA H,et al.Perfluoropolyether-infused nano-texture:A versatile approach to omniphobic coatings with low hysteresis and high transparency[J].Chemical communications,2013,49(6):597-599.
    [72]HE Min,ZHOU Xin,ZENG Xi-ping,et al.Hierarchically structured porous aluminum surfaces for high-efficient removal of condensed water[J].Soft matter,2012,8(25):6680-6683.
    [73]SHILLINGFORD C,MACCALLUM N,WONG T S,et al.Fabrics coated with lubricated nanostructures display robust omniphobicity[J].Nanotechnology,2014,25(1):014019-014031.
    [74]ZHAO Ning,XU Jian,XIE Qiong-dan,et al.Fabrication of biomimetic superhydrophobic coating with a micronano-binary structure[J].Macromolecular rapid communications,2010,26(13):1075-1080.
    [75]ZHU Min,RONG Min-zhi,ZHANG Ming-qiu.Self-healing polymeric materials towards non-structural recovery of functional properties[J].Polymer international,2015,63(10):1741-1749.
    [76]ERBIL H Y,DEMIREL A L,AVCI Y,et al.Transformation of a simple plastic into a superhydrophobic surface[J].Science,2003,299(5611):1377-1380.
    [77]LU Xiao-ying,ZHANG Chang-chun,HAN Yan-chun.Low-density polyethylene superhydrophobic surface by control of its crystallization behavior[J].Macromolecular rapid communications,2004,25(18):1606-1610.
    [78]SHIU Jau-Ye,KUO Chun-wen,CHEN Pei-lin,et al.Fabrication of tunable superhydrophobic surfaces by nanosphere lithography[J].Chemistry of materials,2004,16(4):561-564.
    [79]KENNETH K S L,JOSéB,KENNETH B K T,et al.Superhydrophobic carbon nanotube forests[J].Nano letters,2003,3(12):1701-1705.
    [80]ZHANG En-shuang,CHENG Zhong-jun,LYU Tong,et al.The design of underwater superoleophobic Ni/NiOmicrostructures with tunable oil adhesion[J].Nanoscale,2015,7(45):19293-19299.
    [81]REDON R,VAZQUEZ-OLMOS A,MATA-ZAMORAM E,et al.Contact angle studies on anodic porous alumina[J].Colloid interf sci,2005,287(2):664-670.
    [82]REDóN R,VáZQUEZ O A,MATA Z M E,et al.Contact angle studies on anodic porous alumina[J].Journal of colloid&interface science,2005,287(2):664-670.
    [83]LIU Hong-liang,DING Yi,AO Zhuo,et al.Fabricating surfaces with tunable wettability and adhesion by ionic liquids in a wide range[J].Small,2015,11(15):1782-1786.
    [84]MARTíN J,VáZQUEZ M,HERNáNDEZVéLEZ M,et al.One-dimensional magnetopolymeric nanostructures with tailored sizes[J].Nanotechnology,2008,19(17):175304-175316.
    [85]KONG J,XU Y,YUNG K L,et al.Enhanced polymer melts flow though nanoscale channels under vibration[J].Journal of physical chemistry C,2009,113(2):624-629.
    [86]GRIMM S,SCHWIRN K,G?RING P,et al.Nondestructive mechanical release of ordered polymer microfiber arrays from porous templates[J].Small,2010,3(6):993-1000.
    [87]TENJIMBAYASHI M,NISHIOKA S,KOBAYASHI Y,et al.A lubricant-sandwiched coating with long-term stable anticorrosion performance[J].Langmuir,2018,34(4):1386-1393.
    [88]TIAN Dong-liang,ZHANG Na,ZHENG Xi,et al.Fast responsive and controllable liquid transport on a magnetic fluid/nanoarray composite interface[J].ACS nano,2016,10(6):6220-6226.
    [89]MANABE K,MATSUBAYASHI T,TENJIMBAYASHIM,et al.Controllable broadband optical transparency and wettability switching of temperature-activated solid/liquidinfused nanofibrous membranes[J].ACS nano,2016,10(10):9387-9396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700