基于高光谱数据的百花湖叶绿素a浓度估算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Estimation of Chlorophyll-a Concentration in Baihua Lake Water Based on Hyspectral Data
  • 作者:黄启会 ; 贺中华 ; 梁虹 ; 杨朝晖 ; 黄法苏 ; 曾信波 ; 李秋华
  • 英文作者:HUANG Qihui;HE Zhonghua;LIANG Hong;YANG Chaohui;HUANG Fasu;ZENG Xinbo;LI Qiuhua;School of Geography and Environmental Science,Guizhou Normal University;School of Geography and Environmental Science,Guizhou Normal University/National Karst Rocky Desertification Control Engineering Technology Research Center;Water Resources Department of Guizhou Province;Key Lab for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province,Guizhou Normal University;
  • 关键词:百花湖 ; 高光谱 ; 叶绿素a ; 浓度估算
  • 英文关键词:Baihua Lake;;hyperspectral;;chlorophyll-a;;concentration estimation
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:贵州师范大学地理与环境科学学院;贵州师范大学地理与环境科学学院/国家喀斯特石漠化防治工程技术研究中心;贵州省水利厅;贵州师范大学贵州省山地环境信息系统和生态环境保护重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:国家自然科学基金(41471032;u1612441);; 贵州省国内一流学科建设项目(黔教科研发[2017]85号);; 国家重大创新基地建设项目(黔科合计实验室[2011]4001号);; 贵州省水利厅自然科研基金(KT201402);; 贵州省科技厅自然科研基金(黔科合J字[2010]2026号,黔科合J字[2013]2208号);; 贵州师范大学2015年博士科研启动项目
  • 语种:中文;
  • 页:FJKS201901020
  • 页数:8
  • CN:01
  • ISSN:42-1245/X
  • 分类号:140-147
摘要
为估算百花湖叶绿素a浓度,文章根据实测高光谱和水样分析,分别建立比值模型、荧光峰位置、一阶微分、反射峰面积(NPA)、峰谷距离、基线荧光峰高度(FLH)和三波段模型。同时,基于不同营养状态湖泊的水质数据,建立了适用于不同营养状态水体的叶绿素a估算模型。结果表明:基线荧光峰位置模型的估算效果最好,决定系数R2为0.93,F检验值为201;对比分析4种营养状态下几种估算模型效果得出,中营养化和轻度富营养化水体中,荧光峰位置模型和基线荧光峰高度模型的算法优于其它算法;中度富营养化和重度富营养化水体中,比值模型和三波段模型的估算效果较为理想。该研究结果可为百花湖水环境的监测提供一定的理论依据和技术参考。
        Water environment monitoring was conducted in Baihua Lake of Guiyang City,during which the concentration of chlorophyll-a was to be estimated.For this purpose,several models,involving the ratio,fluorescence peak position,first order differential,reflection peak area,peak valley distance,baseline fluorescence peak height and three bands,were established on the basis of the data obtained from the hyperspectral measurements and monitoring of water quality of Baihua Lake.At the same time,different chlorophyll-a estimation model suitable for different trophic states was set up based on the water quality data.As a result,the baseline fluorescence peak position model(FLH) was proved to be the best in the estimation effects with its determination coefficient(R2) of 0.93,test coefficient(F) of 201;in addition,the results of several chlorophyll-a estimation models under four nutritional conditions were compared,which indicated the algorithms of fluorescence peak location model and baseline fluorescence peak height model were better than other algorithms when the Lake was in mesotrophic condition or moderate eutrophic condition;and the ratio model and three-band algorithm were the best on condition that the Lake was mild eutrophic and severe eutrophic.Hopefully,the results could provide the theoretical basis and technical reference for water environment monitoring in Baihua Lake.
引文
[1]段洪涛,张柏,宋开山,等.查干湖叶绿素a浓度高光谱定量模型研究[J].环境科学,2006,26(7):1219-1226.Duan Hongtao,Zhang Bai,Song Kaishan,et al.Hyperspectral data applied in monitoring and evaluating the water trophic state of Chagan Lake[J].Acta Scientiae Circumstantiae,2006,26(7):1219-1226.
    [2]Jiang Hui,Liu Yao.Analysis and inversion of the nutritional status of China’s Poyang Lake using MODIS data[J].Indian Soc Remote Sens,2016,44(5):837-842.
    [3]Daniel O,Anatoly G,Vitorio E B,et al.Review of constituent retrieval in optically deep and complex waters from satellite imagery[J].Remote Sensing of Environment,2012,118(4):116-126.
    [4]朱云芳,朱利,李家国,等.基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演[J].环境科学学报,2017,37(1):130-137.Zhu Yunfang,Zhu Li,Li Jiaguo,et al.The study of inversion of chlorophyll a in Taihu based on GF-1 WFV image and BP neural network[J].Acta Scientiae Circumstantiae,2017,37(1):130-137.
    [5]Harvey Et,Kratzer S,Philipson P,et al.Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters[J].Remote Sensing of Environment,2015,158:417-430.
    [6]李秋华.贵州高原水库富营养化特征及评价[J],贵州师范大学学报:自然科学版,2018,36(2):1-8.Li Qiuhua.Characteristics and evaluation of eutrophication in Guizhou plateau reservoirs[J].Journal of Guizhou Normal University:Natural Science,2018,36(2):1-8.
    [7]夏品华,林陶.百花湖水库后生浮游动物群落结构时空分布特征及水质评价[J].贵州师范大学学报:自然科学版,2018,36(1):45-56.Xia Pinhua,Lin Tao.Spatial and temporal distributions of the metazooplankton community structure and water quality in Baihuahu Reservoir[J].Journal of Guizhou Normal University:Natural Science,2018,36(1):45-56.
    [8]吴廷宽,贺中华,梁虹,等.贵州百花湖叶绿素a高光谱监测模型研究[J].人民长江,2017,48(3):23-27.Wu Tingkuan,He Zhonghua,Liang Hong,et al.Study on hyperspectral monitoring model of chlorophyll a in Baihua Lake[J].Yangtze River,2017,48(3):23-27.
    [9]吴庭宽,贺中华,梁虹,等.基于高光谱技术的湖泊富营养化综合评价研究:以贵阳市百花湖为例[J].水文,2016,36(2):28-34.Wu Tingkuan,He Zhonghua,Liang Hong,et al.Evaluation of lake eutrophication based on hyperspectral technology:a study case of Baihua Lake in Guiyang City[J].Journal of China Hydrology,2016,36(2):28-34.
    [10]Lu H,Li X J,Wang Y,et al.Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes[J].Science of the Total Environment,2015,530/531:373-382.
    [11]Nazeer M,Nichol Je.Development and application of a remote sensing-based chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong[J].Journal of Hydrology,2016,532:80-89.
    [12]高廷进,李秋华,孟博,等.贵州高原水库汞的分布特征及其对富营养化的响应[J].中国环境科学,2014,34(5):1248-1257.Gao Tingjin,Li Qiuhua,Meng Bo,et al.Distribution of mercury and its response to eutrophication in reservoirs in Guizhou Province[J].China Environmental Science,2014,34(5):1248-1257.
    [13]唐军武,田国良,汪小勇,等.水体光谱测量与分析Ⅰ:水面以上测量法[J].遥感学报,2004,8(1):37-44.Tang Junwu,Tian Guoliang,Wang Xiaoyong,et al.The methods of water spectra measurement and analysisⅠ:above-water method[J].Journal of Remote Sensing,2004,8(1):37-44.
    [14]Pulliainen J,Kallio K,Eloheimol K,et al.A semi-operative approach to lake water quality retrieval from remote sensing data[J].The Science of the Total Environment,2001,26(8):79-93.
    [15]Gitelson A A,Garbuzov G,Szilagyi,et al.Quantitative remote sensing methods for real-time monitoring of inland waters quality[J].Int J Remote Sensing,1993,14(7):1269-1295.
    [16]Rundquist D C,Han L,Schalles J F,et al.Remote measurement of algal chlorophyll in surface waters:the case for the first derivative of reflectance near 690 nm[J].Photogram,Eng,Remote Sens,1996,62:195-200.
    [17]马万栋,王桥,吴传庆,等.基于反射峰面积的水体叶绿素遥感反演模拟研究[J].地球信息科学,2016,16(6):965-970.Ma Wandong,Wang Qiao,Wu Chuanqing,et al.Research on chlorophyll-a retrieval simulation in waters based on the normalized peak area[J].Journal of Geo-information Science,2016,16(6):965-970.
    [18]宋挺,周文鳞,刘军志,等.利用高光谱反演模型评估太湖水体叶绿素a浓度分布[J].环境科学学报,2017,37(3):888-889.Song Ting,Zhou Wenlin,Liu Junzhi,et al.Evaluation on distribution of chlorophyll-a content in surface water of Taihu Lake by hyperspectral inversion models[J].Acta Scientiae Circumstantiae,2017,37(3):888-899.
    [19]Gitelson A A,Gritz Y.Relationships between leaf chlorophyll content and spectral reflectance and algorithms for nondestructive chlorophyll assessment in higher plant leaves[J].Journal of Plant Physiology,2003,160(3):271-282.
    [20]Kirk J T O.Light and Photosynthesis in Acquatic Ecosystems[M].Cambridge:Cambridge University Press,1994.
    [21]周艺,周伟奇,王世新,等.遥感技术在内陆水体水质监测中的应用[J].水科学进展,2004,15(3):312-317.Zhou Yi,Zhou Weiqi,Wang Shixin,et al.Applications of remote sensing techniques to inland water quality monitoring[J].Advances in Water Science,2004,15(3):312-317.
    [22]Dekkera G,Peters Sw.The use of the Thematic Mapper for the analysis of eutrophic lakes:a case study in the Netherlands[J].International Journal of Remote Sensing,1993,14(5):799-821.
    [23]Yacobi Y Z,Gitelson A,Mayo A.Remote sensing of chlorophyll in Lake Kinnerert using high spectral resolution radiometer and landsatTM:Spectral features of reflectance and algorithm development[J].Journal of Plankton Research,1995,17(11):2155-2173.
    [24]Gordon H R.Diffusive reflectance of the ocean:the theory of its augmentation by chlorophyll-a fluorescence at 685 nm[J].Applied Optics,1979,18:1161-1166.
    [25]周冠华,杨一鹏,陈军,等.基于叶绿素荧光峰特征的浑浊水体悬浮物浓度遥感反演[J].湖泊科学,2009,19(2):272-279.Zhou Guanhua,Yang Yipeng,Chen Jun,et al.Inversion of total suspended matter concentration in turbid water based on the characteristic of chlorophyll fluorescence peak[J].Journal of Lake Sciences,2009,19(2):272-279.
    [26]Chi K Y H,Koh S T.Spectral irradiance profiles of suspended marine clay for the estimation of suspended sediment concentration in tropical waters[J].International Journal of Remote Sensing,2003,24(16):3235-3245.
    [27]李素菊,吴倩,王学军,等.巢湖浮游植物叶绿素含量与反射光谱特征的关系[J].湖泊科学,2002,14(3):228-234.Li Suju,Wu Qian,Wang Xuejun,et al.Correlations between reflectance spectra and contents of chlorophyll-a in Chaohu Lake[J].Journal of Lake Sciences,2002,14(3):228-234.
    [28]马荣华,戴锦芳.应用实测光谱估测太湖梅梁湾附近水体叶绿素浓度[J].遥感学报,2005,9(1):78-86.Ma Ronghua,Dai Jinfang.Chlorophyll-a concentration estimation with field spectra of water-body near Meiliang Bayou in Taihu Lake[J].Journal of Remote Sensing,2005,9(1):78-86.
    [29]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测,2002,18(5):47-49.Wang Mingcui,Liu Xueqin,Zhang Jianhui.Evaluate method and classification standard on lake eutrophication[J].Environmental Monitoring in China,2002,18(5):47-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700