不同羧基密度聚羧酸减水剂对水泥石孔结构的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Polycarboxylate Superplasticizers with Different Carboxylic Densities on Pore Structure of Cement Mortar
  • 作者:何燕 ; 洪万领 ; 水亮亮 ; 孔亚宁 ; 彭磊
  • 英文作者:HE Yan;HONG Wanling;SHUI Liangliang;KONG Yaning;PENG Lei;School of Civil Engineering, Suzhou University of Science and Technology;State Key Laboratory of Green Building Materials, China Building Materials Academy;Key Laboratory of Advanced Civil Engineering Materials of Education Ministry, Tongji University;Shanghai Municipal Engineering Design Institute (Group) Co., Ltd.;Shaanxi Provincial High Performance Concrete Engineering Laboratory, Shanxi Railway Institute;
  • 关键词:聚羧酸减水剂 ; 羧基密度 ; 水泥石 ; 孔结构
  • 英文关键词:polycarboxylate superplasticizer;;carboxylic density;;hardened cement mortar;;pore structure
  • 中文刊名:GXYB
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:苏州科技大学土木工程学院;中国建筑材料科学研究总院绿色建筑材料国家重点实验室;同济大学先进土木工程材料教育部重点实验室;上海市政工程设计研究总院(集团)有限公司;陕西铁路工程职业技术学院陕西省高性能混凝土工程实验室;
  • 出版日期:2019-03-11 09:36
  • 出版单位:硅酸盐学报
  • 年:2019
  • 期:v.47;No.362
  • 基金:the support of the Natural Science Foundation of China (51808369);; the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB560016);; the Opening Project of State Key Laboratory of Green Building Materials (YA-615);; Shaanxi Provincial High Performance Concrete Engineering Laboratory (SHPC201701)~~
  • 语种:英文;
  • 页:GXYB201905008
  • 页数:7
  • CN:05
  • ISSN:11-2310/TQ
  • 分类号:54-60
摘要
通过水溶液自由基聚合法合成了不同羧基密度的聚羧酸减水剂,并对所合成聚羧酸减水剂分子结构进行表征,研究了不同羧基密度的聚羧酸减水剂对硬化水泥砂浆孔结构及力学强度的影响。结果表明:水泥砂浆抗压强度与其孔隙率成负相关性,但当孔隙率相同时,分级孔分布显著影响水泥砂浆抗压强度。随着聚羧酸减水剂中羧基密度的增加,聚羧酸减水剂分散性能及引气性能显著增加。当聚羧酸主链羧基密度为6时,水泥砂浆中孔隙率达到最大值。聚羧酸减水剂引入水泥砂浆中的气泡会显著改变硬化砂浆的分级孔分布,显著增加中小孔(200–500μm)的比例,减少大孔(1 200–1 600μm)比例。说明聚羧酸减水剂能够显著改善硬化砂浆孔径分布,使得硬化水泥砂浆中孔径分布更加细小化。砂浆孔结构参数与抗压强度多元线性拟合关系表明,为了提高砂浆力学性能,应采用总引气量小的聚羧酸减水剂,而当总引气量接近时,应优先选择引入分级孔(100–500μm)含量较高的聚羧酸减水剂。
        A series of polycarboxylate(PCE) superplasticizers with different carboxylic densities have been synthesized through aqueous radical copolymerization methods,and the molecular structures of these self-synthesized PCEs were characterized and verified. Effects of PCEs with different carboxylic densities on the pore structure as well as mechanical performance of hardened cement mortar were systematically analyzed. The results show that the mechanical strength of hardened cement mortar is negatively correlated with the porosity. With the same porosity in the hardened cement mortar, the graded pore distribution significantly influences the compressive strength of the hardened cement mortar. With the increase of carboxylic density in the backbone, the air entraining capability of PCEs enhances, and when the carboxyl density of PCE gets to 6, the porosity of the hardened cement mortar achieves to the highest. The entrained bubbles by PCEs into the hardened cement mortar remarkably affect the graded pore distributions, with increased proportion of small and median pores(200–500 μm) and decreased proportion of large pores(1 200–1 600 μm). This indicates that PCEs can significantly improve the pore size distribution, resulting in more uniform and finer pores in the hardened cement mortar, which will be beneficial to the mechanical performance as well as durability of hardened cement mortar. The multiple linear regression result indicates that PCEs entraining low porosity into cement mixture should be preferentially chosen in order to improve the mechanical performance. With similar porosity in hardened cement, the graded proportion of pores between 100–500 μm should be enhanced.
引文
[1]YU Y,LIU J,RAN Q,et al.Current understanding of comb-like copolymer dispersants impact on the hydration characteristics of C3A-gypsum suspension[J].J Therm Anal Calorim,2013,111(1):437-444.
    [2]PLANK J,SCHROEFL C,GRUBER M,et al.Effectiveness of polycarboxylate superplasticizers in ultra-High strength concrete:the importance of PCE compatibility with silica fume[J].J Adv Concr Technol,2009,7(1):5-12.
    [3]BROOKS J J.Influence of mix proportions,plasticizers and superplasticizers on creep and drying shrinkage of Concrete[J].Mag Concr Res,1989,41(148):145-153.
    [4]BANFILL P F G.A viscometric study of cement pastes containing superplasticizers with a note on experimental-techniques[J].Mag Concr Res,1981,33(114):37-47.
    [5]FAN W,STOFFELBACH F,Rieger J,et al.A new class of organosilane-modified polycarboxylate superplasticizers with low sulfate sensitivity[J].Cem Concr Res,2012,42(1):166-172.
    [6]YAMADA K,TAKAHASHI T,HANEHARA S,et al.Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer[J].Cem Concr Res,2000,30(2):197-207.
    [7]Zhang Y R,KONG X M,LU Z B,et al.Effects of the charge characteristics of polycarboxylate superplasticizers on the adsorption and the retardation in cement pastes[J].Cem Concr Res,2015,67:184-196.
    [8]LI S,WEN Z.Dispersibility and air entraining performance of polycarboxylate-type water reducers[J].J Chin Ceram Soc,2009,37(4):616-621.
    [9]HE Y,ZHANG X,KONG Y,et al.Influence of polycarboxylate superplasticizer on rheological behavior in cement paste[J].J Wuhan Univ Technol:Mater Sci,2018,33(4):932-937.
    [10]GAO H,ZHANG X,ZHANG Y.Effect of the entrained air void on strength and interfacial transition zone of air-entrained Mortar[J].JWuhan Univ Technol:Mater Sci,2015,30(5):1020-1028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700