贵州普安地区龙潭组煤系“三气”储层孔隙特征对比:以黔普地1井为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison Study of Pore Properties of the Unconventional Gas Reservoir of the Longtan Formation in the Pu'an Area of Guizhou Province: A Case Study of Well Qianpudi-1
  • 作者:杜胜江 ; 陈厚国 ; 罗香建 ; 符宏斌 ; 赵丽华 ; 卢树藩 ; 刘国栋 ; 杜玉昆 ; 蔡路 ; 宋继伟
  • 英文作者:DU Sheng-jiang;CHEN Hou-guo;LUO Xiang-jian;FU Hong-bin;ZHAO Li-hua;LU Shu-fan;LIU Guo-dong;DU Yu-kun;CAI Lu;SONG Ji-wei;Guizhou Geological Survey,Bureau of Geology and Mineral Exploration and Development of Guizhou Province;East China University of Technology;Chinese Academy of Geological Science;Guizhou Academy of Testing and Analysis;Research Institute of Unconventional Oil & Gas and Renewable Energy, China University of Petroleum;No.115 Geological Party,Bureau of Geology and Mineral Exploration and Development of Guizhou Province;
  • 关键词:煤系“三气” ; 龙潭组 ; 储层 ; 黔普地1井 ; 压汞
  • 英文关键词:The unconventional gas in the coal-measure;;the Longtan Formation;;gas reservoir;;Well Qianpudi-1;;the mercury injection experiment
  • 中文刊名:KWXB
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:贵州省地质调查院;东华理工大学;中国地质科学院;贵州省分析测试研究院;中国石油大学非常规油气与新能源研究院;贵州省地质矿产勘查开发局一一五地质大队;
  • 出版日期:2018-06-07 19:51
  • 出版单位:矿物学报
  • 年:2018
  • 期:v.38
  • 基金:贵州省科技计划项目(编号:黔科合[2016]支撑2807);; 贵州省地质矿产勘查开发局地质科研项目(编号:黔地矿科合(2016)31号);; 中国地质调查局项目(编号:中地调合同[2016]74号);; 贵州省科技计划项目(编号:黔科合平台人才[2018]5626)
  • 语种:中文;
  • 页:KWXB201805007
  • 页数:10
  • CN:05
  • ISSN:52-1045/P
  • 分类号:66-75
摘要
储层的孔隙发育对煤系"三气"的赋存和运移有重要的影响,本文利用压汞实验、氮气等温吸附等方法对研究区黔普地1井龙潭组的煤、泥页岩、砂岩系统开展孔隙对比研究。结果表明,煤、泥页岩、砂岩平均孔隙度之比为1∶0.176∶0.249,具有典型的低孔低渗特征。压汞研究发现,煤岩的孔径要大于泥页岩和致密砂岩,渗透性能也更好。液氮等温吸附分析也显示煤岩的孔径明显大于泥岩和致密砂岩,且具有更大的孔隙体积。氮气吸附曲线总体呈现反S型,样品在吸附氮气的过程中发生了毛细孔凝聚现象,样品孔隙呈开放状态,孔隙结构具有一定的无规则孔特征,以两端开口的圆筒孔及四周开放的平行板孔为主,微孔隙内各个孔径阶段的孔隙均比较发育,连通性好,有利于天然气运移。
        The development of pores of the reservoir have very important influence on migration and occurrence of the unconventional gas in the coal-measure facies. The nitrogen isothermal adsorption and mercury injection experiments have been undertaken to perform a comparative study on the pore properties of coals, shales, and sandstones, collected from the Well Qianpudi-1, of the Longtan Formation in this paper. This study shows that the average porosity ratio among the coal, shale, and sandstone is 1: 0.176: 0.249, with typical characteristics of low porosity and permeability. The mercury injection experiment study finds that the pore diameter and penetrating quality of the coal are respectively bigger and better than those of the shale and tight sandstone. In addition, the analytical results of the Nitrogen isothermal adsorption experiment also show that the pore diameter of the coal is obviously bigger than those of the shale and tight sandstone, with even bigger pore volume in the coal. The nitrogen isothermal adsorption curves of all samples are generally shown as the reversed S-shape curves. The capillary condensation occurred in the process of nitrogen adsorption. The pores of samples pore are open. The pore structure has certain irregular pore characteristics,.which mainly consists of two open cylinder holes at both ends and parallel plate holes around. Moreover, the pores in each pore size stage are relatively developed and have good connectivity, which is conductive to natural gas migration.
引文
[1]贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(02): 129-136.
    [2]Law B E, Curtis J B. Introduction to unconventional petroleum systems [J]. AAPG bull, 2002, 86(11): 1851-1852.
    [3]杨晓东, 张苗, 魏巍, 等. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学, 2017, 28(03): 356-365.
    [4]王佟, 王庆伟, 傅雪海. 煤系非常规天然气的系统研究及其意义[J]. 煤田地质与勘探, 2014, 42(1): 24-27.
    [5]赵靖舟. 非常规油气有关概念、分类及资源潜力[J]. 天然气地球科学, 2012, 23(03): 393-406.
    [6]Olson T, Hobbs B, Brooks R, et al. Paying off for Tom Brown in White River Dom fields tight sandstone deep coals[R]. Natural Gas White Papers: The American Oil and Gas Reports, 2002, 10: 67-75.
    [7]曹代勇, 姚征, 李靖. 煤系非常规天然气评价研究现状与发展趋势[J]. 煤炭科学技术, 2014, 42(01): 89-92+105.
    [8]郭少斌, 付娟娟, 高丹, 等. 中国海陆交互相页岩气研究现状与展望[J]. 石油实验地质, 2015, 37(05): 535-540.
    [9]琚宜文, 颜志丰, 李朝锋, 等. 我国煤层气与页岩气富集特征与开采技术的共性与差异性[A]. 2011年煤层气学术研讨会论文集[C]. 北京, 2011: 470-477.
    [10]Law B E. Basin-centered gas systems[J]. AAPG bull, 2002, 86(11): 1891-1919.
    [11]王中鹏, 张金川, 孙睿, 等. 西页1井龙潭组海陆过渡相页岩含气性分析[J]. 地学前缘, 2015, 22(02): 243-250.
    [12]梁冰, 石迎爽, 孙维吉, 等. 中国煤系“三气”成藏特征及共采可能性[J]. 煤炭学报, 2016,41(1): 167-173.
    [13]张守仁. 深煤层煤层气开效途径展望[J]. 中国煤层气, 2011, 8(4): 18-21.
    [14]秦勇, 申建, 沈玉林. 叠置含气系统共采兼容性—煤系“三气”及深部煤层气开采中的共性地质问题[J]. 煤炭学报, 2016, 41(1): 14-23.
    [15]孙升林, 吴国强, 曹代勇, 等. 煤系矿产资源及其发展趋势[J]. 中国煤炭地质, 2014, 26(11): 1-11.
    [16]Ross D J K, Marc Bustin R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs [J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
    [17]陈尚斌, 夏筱红, 秦勇, 等. 川南富集区龙马溪组页岩气储层孔隙结构分类[J]. 煤炭学报, 2013,38(5): 760-765.
    [18]李建忠, 郑民, 张国生, 等. 中国常规与非常规天然气资源潜力及发展前景[J]. 石油学报, 2012,33(增刊): 89-98.
    [19]贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012,39(2):129-136.
    [20]Bustin A M M, Bustin R M. Importance of rock properties on the producibility of gas shales [J]. International Journal of Coal Geology, 2012, 103: 132-147.
    [21]贵州省地质调查院. 中国区域地质志●贵州志[M]. 北京:地质出版社,2017.
    [22]焦堃. 煤与泥页岩纳米孔隙的成因、演化机制与定量表征[D]. 南京:南京大学,2014..
    [23]马文辛, 刘树根, 黄文明,等. 四川盆地周缘筇竹寺组泥页岩储层特征[J]. 成都理工大学学报:自然科学版,2012, 39(02): 182-189.
    [24]赵佩, 李贤庆, 田兴旺,等. 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学, 2014, 25(6):947-956.
    [25]刘娇男. 沁水盆地南部太原组页岩气储层特征研究[D]. 徐州:中国矿业大学, 2016.
    [26]刘辉, 吴少华, 姜秀民, 等. 快速热解褐煤焦的低温氮吸附等温线形态分析[J]. 煤炭学报, 2005, 30(4): 507-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700