一种ZIF-8/有机硅杂化膜的制备及性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of MOF/organosilica hybrid membranes with performance study
  • 作者:严浩军 ; 张帅 ; 杜红斌 ; 赵亚云 ; 张秋菊 ; 林贻超 ; 孔春龙
  • 英文作者:YAN Haojun;ZHANG Shuai;DU Hongbin;ZHAO Yayun;ZHANG Qiuju;LIN YiChao;KONG Chunlong;Ningbo Electric Power Design Institute;Ningbo institute of Material Technology and Engineering,Chinese Academy of Science;
  • 关键词:ZIF-8/有机硅膜 ; 气体分离性能
  • 英文关键词:ZIF-8/organosilica membrane;;gas separation performance
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:宁波市电力设计院有限公司;中国科学院宁波材料技术与工程研究院;
  • 出版日期:2019-02-25
  • 出版单位:膜科学与技术
  • 年:2019
  • 期:v.39;No.194
  • 语种:中文;
  • 页:MKXY201901003
  • 页数:7
  • CN:01
  • ISSN:62-1049/TB
  • 分类号:13-19
摘要
常规ZIF-8膜制备方式主要是原位合成法、晶种二次法等,但是在膜制备过程中都存在一定的缺陷,主要是由于水热合成存在溶剂热以及膜层与无机材料表面之间结合能力差等原因.以有机硅为膜基底,掺杂ZIF-8填充剂,采用两步法制备了稳定且具有较高气体分离性能的ZIF-8/有机硅杂化膜,通过扫描电镜(SEM)、粉末衍射(PXRD)等对不同ZIF-8掺杂比例制备的膜进行了分析表征,并考察了其对膜气体分离性能的影响.结果发现,经两步浸渍提拉后,膜表面均匀致密、无裂痕缺陷.当有机硅与ZIF-8质量比1∶1时,杂化膜的性能更为优异,H_2/CH_4在150℃时理想选择性系数为47.6,H_2∶CH_4(1∶1)混合气的分离因子为34.5.
        Many efforts have been made for ZIF-8 membrane synthesis,which can be generally classied into two categories: in situ growth and secondary growth. ZIF-8 membranes still suffer from the difficult fabrication processes such as solvothermal synthesis at high temperature, interfacial defects between MOF particles and low interaction towards the substrate. The stable MOF(ZIF-8)/organosilica mixed matrix membranes(MMMs) with effective gas separation performance, which organosilica as matrix and ZIF-8 as fillers, has been successfully fabricated via two steps. A series of membranes with different ZIF-8 contents were prepared and characterized by scanning electron microscope(SEM) and powder X-ray diffraction(PXRD), and the effect of ZIF-8 contents on the performance of gas separation was also investigated. The results showed that the surfaces of membranes prepared through two-step dip-coating method were uniform and compact without any crack defects, and when the mass of ZIF-8 and organosilica is consistent, the as-prepared ZIF-8/organosilica membrane displays a remarkable molecular-sieving performance, the ideal separation factor of H_2/CH_4 is 47.6, and the mixed gas selectivity of H_2/CH_4(1∶1) is up to 34.5 at 150 ℃.
引文
[1] 邹才能, 赵群, 张国生,等. 能源革命:从化石能源到新能源[J]. 天然气工业, 2016,36(1):1-3.
    [2] Li P, Wang Z, Qiao Z, et al. Recent developments in membranes for efficient hydrogen purification[J]. J Membr Sci, 2015, 495:130-168.
    [3] 杨启鹏, 李良军, 岳丽宏, 等. H2/CH4气体分离膜研究进展[J]. 现代化工, 2016, 36(4):29-33.
    [4] Xie K, Fu Q, Xu C, et al. Continuous assembly of a polymer on a metal-organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane[J]. Energy Environ Sci, 2018, 11:544-550.
    [5] Kosinov N, Gascon J, Kapteijn F,et al. Recent developments in zeolite membranes for gas separation[J]. J Membr Sci, 2016, 499: 65-79.
    [6] Qiu S, Xue M, Zhu G. Metal-organic framework membranes: from synthesis to separation application[J]. Chem Soc Rev, 2014, 43:6116-6140.
    [7] Zhang F, Zou X, Gao X, et al. Hydrogen selective NH2 - MIL - 53(Al) MOF membranes with high permeability[J]. Adv Func Mater, 2012, 22:3583-3590.
    [8] Zhou S, Zou X, Sun F, et al. Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation[J]. J Mater Chem, 2012,22:10322-10328.
    [9] Zhou S, Zou X, Sun F, et al. Development of hydrogen-selective CAU - 1 MOF membranes for hydrogen purification by ‘dual-metal-source’ approach[J]. Int J Hydrogen Energ. 2013,38:5338-5347.
    [10] Liu Q, Wang N Y, Caro J, et al. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes[J]. J Am Chem Soc, 2013,135:17679-17682.
    [11] Huang A S, Bux H, Steinbach F, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF - 22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angew Chem Int Ed, 2010,49:4958-4961.
    [12] Huang A S, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF - 90 membrane with hydrogen selectivity through covalent functionalization[J]. J Am Chem Soc, 2010, 132:15562-15564.
    [13] Ameloot R, Vermoortele F, Vanhove W, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability[J]. Nat Chem, 2011, 3:382-387.
    [14] Yao J, Dong D, Li D, et al. Contra-diffusion synthesis of ZIF - 8 films on a polymer substrate Contra-diffusion synthesis of ZIF - 8 films on a polymer substrate[J]. Chem Commun, 2011, 47:2559-2561.
    [15] Furukawa H, Cordova K E, Keeffe M O, et al. The chemistry and applications of metal-organic frameworks[J].Science, 2013, 341:974-986.
    [16] Vinoba M, Bhagiyalakshmi M, Alqaheem Y, et al. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review[J]. Sep Purif Technol, 2017, 188:431-450.
    [17] Qureshi H F, Nijmeijer A, Winnubst L, Influence of sol-gel process parameters on the micro-structure and performance of hybrid silica membranes[J], J Membr Sci, 2013, 446:19-25.
    [18] Kong C L, DuH B, Chen L,et al. Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation[J], Energy Environ Sci, 2017, 10:1812-1819.
    [19] Torad N L, Hu M, Kamachi Y, et al. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF - 8 crystals[J]. Chem Commun, 2013, 49:2521-2523.
    [20] Yang X, Du H, Lin Y, et al. Hybrid organosilica membrane with high CO2 permselectivity fabricated by a two-step hot coating method[J]. J Membr Sci, 2016, 506:31-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700