基于动力系统结构稳定性的共轭剪切破裂-地震复合模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Conjugate shear fracture-seismic composite model based on structural stability of dynamic system
  • 作者:乔建永 ; 马念杰 ; 马骥 ; 赵志强 ; 郭晓菲 ; 师皓宇
  • 英文作者:QIAO Jianyong;MA Nianjie;MA Ji;ZHAO Zhiqiang;GUO Xiaofei;SHI Haoyu;School of Energy and Mining Engineering,China University of Mining and Technology(Beijing);Department of Mathematics,Beijing University of Posts and Telecommunications;School of Safety Engineering,North China Institute of Science and Technology;
  • 关键词:花瓣逆定理 ; 蝶形 ; 共轭剪切破裂 ; 地震 ; 能量
  • 英文关键词:petal inverse theorem;;butterfly-shaped;;conjugate shear fracture;;earthquake;;energy
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)能源与矿业学院;北京邮电大学理学院;华北科技学院安全工程学院;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:国家自然科学基金资助项目(51704294,51434006);; 中央高校基本科研业务费资助项目(3142018022)
  • 语种:中文;
  • 页:MTXB201906002
  • 页数:10
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:17-26
摘要
地壳中岩体破坏、断层形成与地震诱发具有成因联系,其中"X"型共轭剪切破裂与地震发生关系密切。为此,基于动力系统结构稳定性理论和孔洞岩体蝶形破坏理论,构建了"X"型共轭剪切破裂-地震复合模型,推导了破裂尺寸计算公式,给出了地震释放能量的计算方法。用动力系统理论解释了破裂扩展尺寸与地震能量释放存在的定量对应关系,从理论上完整阐述"X"型、"V"型和"Y"型共轭破裂特征的生成及演化力学机理,推演出共轭剪切破裂扩展和伴随地震发生的重要物理力学现象及规律。研究结果表明:在高偏差应力场作用下的地下软弱异性体周围岩体满足摩尔-库仑剪切破坏条件发生破坏,形成蝶形破坏区,即花瓣形破坏区,随着蝶形破坏区的扩展,会形成以软弱异性体为中心的显性或隐性X型共轭剪切破裂;软弱异性体周围岩体强度特征变化,使得共轭破裂表现出"X","V","Y"型共轭特征;在一定地应力和围岩环境中,地壳软弱异性体及其周围岩体构成的非线性动力系统,对于地应力和地层强度的变化具有敏感依赖性,即共轭剪切破裂的扩展尺寸和地震释放的能量具有相互伴生的指数型变化特征,相同的应力扰动在不同的构造应力场作用下引发共轭剪切破裂一次性扩展的尺度不同,会引发不同级别的地震,存在着非敏感依赖区域向敏感依赖区转化的特征拐点。
        Rock mass failure and fault formation in the earth crust are related to the genesis of induced seismicity,in which the X-typed conjugate shear fracture is closely related to zones which are frequently subjected to earthquakes.Based on the stability theory of dynamic system and butterfly failure theory about rock masses around holes,a X-shaped conjugate shear fracture-seismic composite model was established. The calculation formula of fracture size was derived,and the calculation method of seismic energy was presented.The authors used the dynamical system theory to explain a quantitative correspondence between the size of fracture expansion and the energy release of earthquake,and fully elaborated the formation and evolution mechanics of X-type,V-type and Y-type conjugate fractures.The important physical mechanics phenomena and laws associated with the conjugate shear fractures and earthquakes were deduced.The research result indicated that the failure of rock mass around the underground soft anisotropic body under the action of high deviation stress field was in accordance with the Mohr-Coulomb shear failure condition,and formed a butterfly-shaped failure zone which can also be called as the petal-shaped damage zone.With the expansion of the butterfly-shaped failure zone,the dominant or recessive X-type conjugate shear fracture centered on the soft anisotropic body was formed.The change of strength characteristics of the rock mass around the soft anisotropic body made the conjugate fracture exhibit X-type,V-type and Y-type characteristics.Under certain in-situ stress and surrounding rock environment,the non-linear dynamic system comprised of soft anisotropic bodies in the earth's crust and surrounding rock mass showed sensitivity to,and dependence on,the in situ stress and formation strength.The extended size of conjugate shear fracture and the energy released by the earthquake had mutual associated exponential variation characteristics.The same stress increment triggered different one-time extension scales of conjugate fractures under different tectonic stress fields to thus induce different magnitudes of earthquake,and there existed a characteristic inflection point from non-sensitive dependence region to sensitive dependence region.
引文
[1] VALOROSO L,CHIARALUCE L,COLLETTINI C.Earthquakes and fault zone structure[J].Geology,2014,42(4):343-346.
    [2] RICHARDS T L. A terrestrial shear pattern?[J]. Pure&Applied Geophysics,1973,110(1):2012-2021.
    [3]刘浦雄,陈章立.地震条带及其在地震预报中的应用[J].中国地震,1989,5(1):23-32.LIU Puxiong,CHEN Zhangli. Seismicity band and preceding earthquake and its application in earthquake prediction[J]. Earthquake Research in China,1989,5(1):23-32.
    [4]张四昌.中国大陆共轭地震构造研究[J].中国地震,1991,7(2):69-76.ZHANG Sichang. Studies of conjugate seismotectonics of the continental earthquakes in China[J]. Earthquake Research in China,1991,7(2):69-76.
    [5] HUDNUT K W,SEEBER L,PACHECO J. Cross-fault triggering in the November 1987 superstition hills earthquake sequence,southern California[J]. Geophysical Research Letters,1989,16(2):199-202.
    [6] STICKNEY M C,LAGESON D R.Seismotectonics of the 20 August1999 Red Rock Valley,Montana,earthquake[J]. Bulletin of the Seismologial Society of America,2002,92:2449-2464.
    [7] HORIKAWA H.Earthquake doublet in Kagoshima,Japan:Rupture of asperitiesin as stress shadow[J].Bulletin of the Seismologial Society of America,2001,91(1):112-127.
    [8] YUKUTAKE Y,TAKEDA T,OBARA K. Well-resolved hypocenter distribution using the double-difference relocation method in the region of the 2007 Chuetsu-oki earthquake[J]. Earth Planets Space,2008,60:1105-1109.
    [9] CHEN K C,HUANG B S,WANG J H,et al.Conjugate thrust faulting associated with the 1999 chi-chi,taiwan,earthquake sequence[J].Geophysical Research Letters,2002,29(8):118-111.
    [10] AKI K,RICHARDS P G.Quantitative seismology theory and methods[M].San Francisco:W.H.Freeman and Company,1980.
    [11] HONDA H.The mechanism of the earthquakes[M].Miyagi:Tohoku University,1957.
    [12] KASAHARA K.Earthquake mechanics[M].Cambridge:Cambridge University Press,1981.
    [13] BURRIDGE R,KNOPOFF L. Body force equivalents for seismic dislocations[J].Bulletin of the Seismologial Society of America,1964,54:1875-1888.
    [14] STEKETEE J A.On Volterra’s dislocations in a semi-infinite elastic medium[J]. Canadian Journal of Physics,1958,36(2):192-205.
    [15] OKADA Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismologial Society of America,1985,75(4):1135-1154.
    [16] HASKELL N. Total energy and energy spectral density of elastic wave radiation from propagaton faults[J].Bulletin of the Seismologial Society of America,1964,54(6):1811-1841.
    [17] STARR A T.Slip in a crystal and rupture in a solid due to shear[J].Mathematical Proceedings of the Cambridge Philosophical Society,1928,24(4):489-500.
    [18] CHEN Y T,KNOPOFF L. Static shear crack with a zone of slipweakening[J]. Geophysical Journal International,2010,87(3):1005-1024.
    [19] AKI K. Asperities,barriers,characteristic earthquakes and strong motion prediction[J]. Journal of Geophysical Research Atmospheres,1984,89(B7):5867-5872.
    [20] KANAMORI H.The nature of seismicity patterns before large earthquakes[J].Earthquake Prediction:An International Review,1981:1-19.
    [21] BURRIDGE R,KNOPOFF L.Model and theoretical seismicity[J].Bulletin of the Seismologial Society of America,1967,57:341-371.
    [22]王启欣,江在森,武艳强,等.不同模型下地震位错理论的对比及其应用进展综述[J].地震学报,2015,37(4):690-704.WANG Qixin,JIANG Zaijiang,WU Yanqiang,et al. A review on comparison and progress in applications of earthquake dislocation theories based on different models[J].Acta Seismologica Sinica,2015,37(4):690-704.
    [23] WANG K,LIU C L,XIONG X,et al. Co-and post-seismic surface deformation and gravity changes of MS7.0 Lushan earthquake[J].Earthquake Science,2013,26(3/4):207-212.
    [24] JIANG Z S,WANG M,WANG Y Z,et al.GPS constrained coseismic source and slip distribution of the 2013 Mw6.6 Lushan China,earthquake and its tectonic implications[J].Geophys Research Letters,2014,41(2):407-413.
    [25]燕乃玲,李辉,申重阳.丽江地震前后重力场变化的有限矩形位错模型分析[J].地震学报,2003,25(2):172-181.YAN Nailing,LI Hui,SHEN Chongyang. Analyses on gravity variation before and after the Lijiang earthquake based on a finite rectangular dislocation model[J]. Acta Seismologica Sinica,2003,25(2):172-181.
    [26]乔建永.重整化变换的复动力学[M].北京:科学出版社,北京,2010.
    [27] QIAO J Y.On the preimages of parabolic points[J].Nonlinearity,2000,13:813-818.
    [28]赵志强,马念杰,刘洪涛,等.巷道蝶形破坏理论及其应用前景[J].中国矿业大学学报,2018,47(5):969-978.ZHAO Zhiqiang,MA Nianjie,LIU Hongtao,et al. A butterfly failure theory of rock mass around roadway and its application prospect[J].Journal of China University of Mining and Technology,2018,47(5):969-978.
    [29]马念杰,李季,赵志强.圆形巷道围岩偏应力场及塑性区分布规律研究[J].中国矿业大学学报,2015,44(2):206-213.MA Nianjie,LI Ji,ZHAO Zhiqiang. Distribution of the deviatoric stress field and plastic zone in circular roadway surrounding rock[J].Journal of China University of Mining and Technology,2015,44(2):206-213.
    [30]赵志强.大变形回采巷道围岩变形破坏机理与控制方法研究[D].北京:中国矿业大学(北京),2014.ZHAO Zhiqiang. Mechanism of surrounding rock deformation and failure and control method research in large deformation mining roadway[D]. Beijing:China University of Mining&Technology(Beijing),2014.
    [31]郭晓菲,马念杰,赵希栋,等.圆形巷道围岩塑性区的一般形态及其判定准则[J].煤炭学报,2016,41(8):1871-1877.GUO Xiaofei,MA Nianjie,ZHAO Xidong,et al. General shapes and criterion for surrounding rock mass plastic zone of round roadway[J].Journal of China Coal Society,2016,41(8):1871-1877.
    [32]马念杰,郭晓菲,赵志强,等.均质圆形巷道蝶型冲击地压发生机理及其判定准则[J].煤炭学报,2016,41(11):2679-2688.MA Nianjie,GUO Xiaofei,ZHAO Zhiqiang,et al.Occurrence mechanisms and judging criterion on circular tunnel butterfly rock burst in homogeneous medium[J]. Journal of China Coal Society,2016,41(11),2679-2688.
    [33]赵志强,马念杰,郭晓菲,等.煤层巷道蝶型冲击地压发生机理猜想[J].煤炭学报,2016,41(11):2689-2697.ZHAO Zhiqiang,MA Nianjie,GUO Xiaofei,et al. Mechanism conjecture of butterfly rock burst in coal seam roadway[J]. Journal of China Coal Society,2016,41(11):2689-2697.
    [34]马念杰,赵希栋,赵志强,等.掘进巷道蝶型煤与瓦斯突出机理猜想[J].矿业科学学报,2017,40(4):137-149.MA Nianjie,ZHAO Xidong,ZHAO Zhiqiang,et al. Conjecture about mechanism of butterfly-shape coal and gas outburst in excavation roadway[J]. Journal of Mining Science and Technology,2017,40(4):137-149.
    [35] NIKOLAS I C,WALTER D M.Seismic velocity structure and composition of the continental crust:A global view[J].Journal of Geophysical Research:Solid Earth,1995,100(B6):9761-9788.
    [36] RUDNICK R L,FOUNTAIN D M. Nature and composition of the continental crust:a lower crustal perspective[J]. Reviews of Geophysics,1995,33(3):267-309.
    [37]李忠.迭代,混沌与分形[M].北京:科学出版社,2007.
    [38]李红.构造应力场、活动断裂及区域地震活动性的数值模拟研究[D].北京:中国地震局地壳应力研究所,2008.LI Hong. Numerical simulation on tectonic stress field,active fault and regional seismicity[D].Beijing:Institute of Crustal Stress,China Seismological Bureau,2008.
    [39]杨瑞东,盛学庸,魏晓,等.基于Google Earth影像分析区域性大型"X"共轭节理系统对宏观岩溶作用的控制[J].地质论评,2009,55(2):173-180.YANG Ruidong,SHENG Xueyong,WEI Xiao,et al. The control of regional large “X” conjugate joint system on Karstification from Google Earth image[J]. Geological Review,2009,55(2):173-180.
    [40]谢仁海,渠天祥,钱光谟.构造地质学[M].徐州:中国矿业大学出版社,1991.
    [41] PAYNE S J,JAMES E Z,DAVID W R.Stress triggering of conjugate normal faulting:Late aftershocks of the 1983 ms 7. 3 borah peak,idaho,earthquake[J]. Bulletin of the Seismologial Society of America,2004,94(3):828-844.
    [42] YIN A,TAYLOR M H.Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of Amercia Bulletin,2011,123(9-10):1798-1821.
    [43] YOUNG S S,POLLARD D D. Conjugate normal faults in layered sedimentary rocks(abstracts with programs)[J].Geological Society of Amercia Bulletin,2000,32:31.
    [44] GUTENBERG B,RICHTER C F. Magnitude and energy of earthquakes[J].Science,1936,83(2147):183-185.
    [45] REASENBERG P A,SIMPSON R W.Response of regional seismicity to the static stress change produced by the Loma Prieta Earthquake[J].Science,1992,255:1687-1690.
    [46] HARRIS R A,SIMPSON R W.Changes in static stress on southern California faults after the 1992 Landers earthquake[J]. Nature,1992,360:251-254.
    [47] STEIN R S.The role of stress transfer in earthquake occurrence[J].Nature,1999,402:605-609.
    [48] NALBANT S S,STEACY S,SIEH K,et al.Seismology:Earthquake risk on the Sunda trench[J].Nature,2005,435(7043):756-757.
    [49]雷兴林,马胜利,苏金蓉,等.汶川地震后中下地壳及上地幔的粘弹性效应引起的应力变化与芦山地震的发生机制[J].地震地质,2013,35(2):411-422.LEI Xinglin,MA Shengli,SU Jinrong,et al. Inelastic trigger of the2013 Mw 6. 6 Lushsn earthquake by the 2008 Mw7. 9 Wenchuan earthquake[J].Seismology and Geology,2013,35(2):411-422.
    [50] HUSEN S,WIEMER S,SMITH R B.Remotely triggered seismicity in the Yellow-stone National Park Region by the 2002 Mw7.9 Denali fault earthquake,Alaska[J].Bulletin of the Seismologial Society of America,2004,94(6B):S317-S331.
    [51] NISHIMURA T,FUJIWARA S,MURAKAMI M,et al. The M6. 1earthquake triggered by volcanic inflation of Iwate volcano,northern Japan,observed by satellite radar interferometry[J].Geophysical Research Letters,2001,28:635-638.
    [52] COCHRAN E S,VIDALE J E,TANAKA S.Earth tides can trigger shallow thrust fault earthquakes[J]. Science,2004,306(5699):1164-1166.
    [53] LI Jin,JIANG Haikun.A Statistical analysis on the wenchuan aftershock activity triggered by earth tide[J]. Earthquake Research in China,2013,27(1):23-38.
    [54] COOK N G W. Seismicity associated with mining[J]. Engineering Geology,1976,10:99-122.
    [55] MADDOX J. Earthquakes and the earth’s rotation[J]. Nature,1988,332(6159):11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700