锁固段之间的力学作用模式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MODES OF MECHANICAL ACTION BETWEEN LOCKED SEGMENTS
  • 作者:陈竑然 ; 秦四清 ; 薛雷 ; 杨百存 ; 张珂
  • 英文作者:CHEN Hongran;QIN Siqing;XUE Lei;YANG Baicun;ZHANG Ke;Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences;Institutions of Earth Science,Chinese Academy of Sciences;College of Earth and Planetary Sciences,University of Chinese Academy of Sciences;
  • 关键词:锁固段 ; 标志性事件 ; 承载力 ; 力学模型 ; 作用模式
  • 英文关键词:Locked segment;;Characteristic event;;Bearing capacity;;Mechanical model;;Action mode
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:中国科学院地质与地球物理研究所中国科学院页岩气与地质工程重点实验室;中国科学院地球科学研究院;中国科学院大学地球与行星科学学院;
  • 出版日期:2019-02-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:v.27;No.129
  • 基金:中国博士后基金(2018M640181);; 国家自然科学基金(41572311,U1704243,41302233)资助~~
  • 语种:中文;
  • 页:GCDZ201901001
  • 页数:13
  • CN:01
  • ISSN:11-3249/P
  • 分类号:4-16
摘要
天然锁固段主控锁固型斜坡稳定性和构造地震演化过程,其按照承载力从低到高的次序依次断裂(宏观破坏)。因此,研究某一锁固段断裂时下一个锁固段的力学响应机制,对预测后者的断裂行为具有重要意义。研究表明,锁固段在体积膨胀点处产生的高能级特征破裂事件(标志性事件)可作为该点的判识标志,亦为锁固段的断裂前兆。我们构建了剪切作用下断层中包含两个锁固段的力学模型,基于理论分析和数值模拟讨论了具有不同承载力的锁固段组合导致的力学行为,指出天然锁固段之间的力学作用遵循强作用模式,即当前锁固段被加载至峰值强度点时,再经历一个可忽略的剪切位移增量或应变增量,伴随的荷载转移可使下一个锁固段演化至其体积膨胀点。该模式能够合理解释多种地震观测现象和实验结果。
        Natural locked segments dominate the stability of locked-segment-type slopes and the evolutionary process of tectonic earthquakes. They fail in order of bearing capacity from low to high. Therefore,it is very important to study the mechanical response mechanism of the next locked segment while the current locked segment is broken,and predict the fracture behavior of the latter. We found that a high-energy-level characteristic cracking event( characteristic event) at the volume-expansion point of locked segment can be viewed as both the indicator of the point and the precursor to the rupture of locked segment. We established a mechanical model consisting of two locked segments that are subjected to shear loading,discussed the mechanical behavior resulted from different combinations of locked segments' bearing capacity based on the theoretical analysis and numerical simulations,and stated that the mechanical action between natural locked segments follows a strong action mode. In other words,when the current locked segment is loaded to reach its peak-stress point,the load applied to it will be transferred to the next locked segment; the load transfer with a negligible increase in shear displacement or strain can make the latter evolve to its volume-expansion point. The mode can well explain many kinds of seismic observation phenomena and experimental results.
引文
Aki K.1979.Characterization of barriers on an earthquake fault[J].Journal of Geophysical Research,84(B11):6140-6148.
    Aki K.1984.Asperities,barriers,characteristic earthquakes and strong motion prediction[J].Journal of Geophysical Research,89(B7):5867-5872.
    Baud P,Meredith P G.1997.Damage accumulation during triaxial creep of Darley Dale sandstone from pore volumometry and acoustic emission[J].International Journal of Rock Mechanics and Mining Sciences,34(3):24.e21-24.e10.
    Benioff H.1951.Earthquakes and rock creep:(Part I:Creep characteristics of rocks and the origin of aftershocks)[J].Bulletin of the Seismological Society of America,41(1):31-62.
    Carter N L,Tsenn M C.1987.Flow properties of continental lithosphere[J].Tectonophysics,136(1):27-63.
    Chen G Q,Wang J C,Wang W,et al.2017.Failure characteristics of rock mass with intermittent joints of different connecting rates under direct shear test[J].Journal of Engineering Geology,25(2):322-329.
    Chen H R,Qin S Q,Xue L,et al.2018.A physical model predicting instability of rock slopes with locked segments along a potential slip surface[J].Engineering Geology,242:34-43.
    Chen H R,Qin S Q,Xue L,et al.2017.Characterization of brittle failure of rock and limitation of Weibull distribution[J].Progress in Geophysics,32(5):2200-2206.
    Chen H R,Xue L,Qin S Q.2018.Energy level characteristics of acoustic emission events at the volume dilation point of a locked segment[J].Journal of North China University of Water Resources and Electric Power(Natural Science Edition),39(6):19-24.
    Cheng Q G,Zhang Z Y,Cui P.2004.Dynamical mechanism and stability criterion of landslide under lockup of soil arching[J].Chinese Journal of Rock Mechanics and Engineering,23(17):2855-2864.
    Ding W F,Zhou Y T.2015.Analysis for unstable rock stability based on locking portion model of dominant fissure[J].Yangze River,46(24):72-77.
    Das S,Aki K.1977.Fault plane with barriers:A versatile earthquake model[J].Journal of Geophysical Research,82(36):5658-5670.
    Eberhardt E,Stead D,Coggan J S.2004.Numerical analysis of initiation and progressive failure in natural rock slopes-the 1991 Randa rockslide[J].International Journal of Rock Mechanics and Mining Sciences,41(1):69-87.
    Einstein H H,Veneziano D,Baecher G B,et al.1983.The effect of discontinuity persistence on rock slope stability[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,20(5):227-236.
    Frayssines M,Hantz D.2006.Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine Ranges(French Alps)[J].Engineering Geology,86(4):256-270.
    Goebel T H W,Becker T W,Schorlemmer D,et al.2012.Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics[J].Journal of Geophysical Research,117(B3):1-18.
    Hanks T C.1977.Earthquake stress drops,ambient tectonic stresses and stresses that drive plate motions[J].Pure and Applied Geophysics,115(1):441-458.
    Huang D,Cen D F,Ma G W,et al.2015.Step-path failure of rock slopes with intermittent joints[J].Landslides,12(5):911-926.
    Huang R Q.2015.Understanding the mechanism of large-scale landslides[M]//Lollino G,Giordan D,Crosta G B,et al.Engineering Geology for Society and Territory-Volume 2:Landslide Processes.Cham:Springer International Publishing:13-32.
    Huang R Q,Chen G Q,Guo F,et al.2016.Experimental study on the brittle failure of the locking section in a large-scale rock slide[J].Landslides,13(3):583-588.
    Huang R Q,Chen G Q,Tang P.2017.Precursor information of locking segment landslides based on transient characteristics[J].Chinese Journal of Rock Mechanics and Engineering,36(3):521-533.
    Ishida T,Kanagawa T,Kanaori Y.2010.Source distribution of acoustic emissions during an in-situ direct shear test:Implications for an analog model of seismogenic faulting in an inhomogeneous rock mass[J].Engineering Geology,110(3):66-76.
    Jiang H K,Zhang L,Zhou Y S.2000.Granite deformation and behaviour of acoustic emission sequence under the temperature and pressure condition in different crust depths[J].Acta Seismologica Sinica,22(4):395-403.
    Jiao M R.2000.Mathmatical and physical simulation on the seismogenic process and its application in a study of earthquake forecasting[D].Beijing:Institute of Geophysics,China Earthquake Administration.
    Kanamori H,Anderson D L.1975.Theoretical basis of some empirical relations in seismology[J].Bulletin of the Seismological Society of America,65(5):1073-1095.
    Kanamori H,Stewart G S.1978.Seismological aspects of the Guatemala Earthquake of February 4,1976[J].Journal of Geophysical Research,83(B7):3427-3434.
    Kato A,Miyatake T,Hirata N.2010.Asperity and barriers of the 2004mid-Niigata Prefecture earthquake revealed by highly dense seismic observations[J].Bulletin of the Seismological Society of America,100(1):298-306.
    Kemeny J.2003.The time-dependent reduction of sliding cohesion due to rock bridges along discontinuities:A fracture mechanics approach[J].Rock Mechanics and Rock Engineering,36(1):27-38.
    Kemeny J.2005.Time-dependent drift degradation due to the progressive failure of rock bridges along discontinuities[J].International Journal of Rock Mechanics and Mining Sciences,42(1):35-46.
    Lajtai E Z.1969.Strength of discontinuous rocks in direct shear[J].Géotechnique,19(2):218-233.
    Lay T,Kanamori H,Ruff L J.1982.The asperity model and the nature of large subduction zone earthquakes[J].Earthquake Prediction Research,1(1):3-71.
    Lei X L.2003.How do asperities fracture?An experimental study of unbroken asperities[J].Earth and Planetary Science Letters,213(3-4):347-359.
    Li P,Qin S Q,Xue L,et al.2016.Identification method of foreshock events[J].Progress in Geophysics,31(4):1450-1455.
    Li Y S.1995.Experimental analysis on the mechanical effects of loading rates on red sandstone[J].Journal of Tongji University,23(3):265-269.
    Lin P,Tang C A,Chen Z H,et al.1999.Numerical and experimental study of deformation and failure behavior in a double rock specimen system[J].Earthquake,19(4):413-418.
    Liu J X,Tang C A,Zhu W C,et al.2004.Rock-coal model for studying the rockburst[J].Chinese Journal of Geotechnical Engineering,26(2):276-280.
    Liu Y M,Xia C C.2010.Weakening mechanism of mechanical behaviors and failure models of rock mass containing discontinuous joints under direct shear condition[J].Rock and Soil Mechanics,31(3):695-701.
    Mei S R.1995.Development of research on the physical model of earthquake precursor field and the mechanism of precursors'timespace distribution[J].Earthquake,(S1):2-22.
    Meng Q B,Zhang M W,Han L J,et al.2016.Effects of size and strain rate on the mechanical behaviors of rock specimens under uniaxial compression[J].Arabian Journal of Geosciences,9(8):527.
    Mogi K.1962.Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena[J].Bulletin of the Earthquake Research Institute,University of Tokyo,40(1):125-173.
    Ohnaka M.2003.A constitutive scaling law and a unified comprehension for frictional slip failure,shear fracture of intact rock,and earthquake rupture[J].Journal of Geophysical Research,108(B2):1-21.
    Pan X H,Xue L,Qin S Q,et al.2014.Types,formation conditions and pre-decision method for large landslides with potential locked patches[J].Journal of Engineering Geology,22(6):1159-1167.
    Qin S Q,Li P,Yang B C,et al.2016a.The identification of mainshock events for main seismic zones in seismic belts of the Circum Pacific,ocean ridge and continental rift[J].Progress in Geophysics,31(2):574-588.
    Qin S Q,Yang B C,Wu X W,et al.2016b.The identification of mainshock events for some seismic zones in mainland China(Ⅱ)[J].Progress in Geophysics,31(1):115-142.
    Qin S Q,Yang B C,Xue L,et al.2016c.The identification of mainshock events for main seismic zones in the Eurasian seismic belt[J].Progress in Geophysics,31(2):559-573.
    Qin S Q,Wang Y Y,Ma P.2010a.Exponential laws of critical displacement evolution for landslides and avalanches[J].Chinese Journal of Rock Mechanics and Engineering,29(5):873-880.
    Qin S Q,Xu X W,Hu P,et al.2010b.Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction[J].Chinese Journal of Geophysics,53(4):1001-1014.
    Qin S Q,Yang B C,Wu X W,et al.2015a.The identification of mainshockevents for some seismic zones in mainland China(Ⅰ)[J].Progress in Geophysics,30(6):2517-2550.
    Qin S Q,Yang B C,Xue L,et al.2015b.Prospective prediction of major earthquakes for the Taiwan Strait seismic zone[J].Progress in Geophysics,30(5):2013-2019.
    Senfaute G,Duperret A,Lawrence J A.2009.Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs:a case study at Mesnil-Val,Normandie,NW France[J].Natural Hazards and Earth System Sciences,9(5):1625-1641.
    Song Z P,Zhang G M,Liu J.2011.Global Earthquake Catalog[M].Beijing:Seismological Press.
    Tang C A,Kaiser P K.1998.Numerical simulation of cumulative damage and seismic energy release during brittle rock failure-Part I:Fundamentals[J].International Journal of Rock Mechanics and Mining Sciences,35(2):113-121.
    Tang C A,Wang S H,Fu Y F.2003.Numerical test of rock failure[M].Beijing:Science Press.
    Tang C A,Xu X H.1988.Stiffness effect and model of earthquake source development[J].Earthquake Research in China,4(4):79-85.
    Tang H M,Zou Z X,Xiong C R,et al.2015.An evolution model of large consequent bedding rockslides,with particular reference to the Jiweishan rockslide in Southwest China[J].Engineering Geology,186:17-27.
    Tarasov B,Potvin Y.2013.Universal criteria for rock brittleness estimation under triaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,59(4):57-69.
    Wang L S,Zhang Z Y,Zhan Z.1988.On the mechanism of starting,sliding and braking of Xintan landslide in Yangtze Gorge[C]∥Proceedings of the 5th International Symposium on Landslide,1988.A.A Balkema:Rotterdam.
    Wu X W,Qin S Q,Xue L,et al.2016.Physical mechanism of major earthquakes by earthquake cases[J].Chinese Journal of Geophysics,59(10):3696-3710.
    Wu X W,Qin S Q,Xue L,et al.2018.Behavior characteristics from selforganization tocriticality caused by cumulative damage leading toinstability of locked segments in seismogenic fault system[J].Acta Physica Sinica,67(20):460-469.
    Xue L,Qin S Q,Li P,et al.2014.New quantitative displacement criteria for slope deformation process:From the onset of the accelerating creep to brittle rupture and final failure[J].Engineering Geology,182(Part A):79-87.
    Xue L,Qin S Q,Pan X H,et al.2018.Mechanism and physical prediction model of instability of the locked-segment type slopes[J].Journal of Engineering Geology,26(1):179-192.
    Yang B C,Qin S Q,Xue L,et al.2018.Identification of seismic type of2017 Iraq MW7.3 earthquake and analysis of its post-quake trend[J].Chinese Journal of Geophysics,61(2):616-624.
    Yin Y P,Sun P,Zhang M,et al.2011.Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan,Chongqing,China[J].Landslides,8(1):49-65.
    Zang S X.1984.Earthquake stress drop and the stress drops of rock fracture[J].Acta Seismologica Sinica,6(2):182-194.
    Zhang J,Ai C,li Y W,et al.2017.Brittleness evaluation index based on energy variation in the whole process of rock failure[J].Chinese Journal of Rock Mechanics and Engineering,36(6):1326-1340.
    Zhang Z Y,Wang S T,Wang L S.1981.Principle of engineering geology analysis[M].Beijing:Geological Publishing House.
    陈国庆,王剑超,王伟,等.2017.不同连通率断续节理岩体直剪破坏特征[J].工程地质学报,25(2):322-329.
    陈竑然,秦四清,薛雷,等.2017.岩石脆性破坏表征与Weibull分布适用范围[J].地球物理学进展,32(5):2200-2206.
    陈竑然,薛雷,秦四清.2018.锁固段体积膨胀点的声发射事件能级特征[J].华北水利水电大学学报(自然科学版),39(6):19-24.
    程谦恭,张倬元,崔鹏.2004.平卧“支撑拱”锁固滑坡动力学机理与稳定性判据[J].岩石力学与工程学报,23(17):2855-2864.
    丁王飞,周云涛.2015.基于主控结构面锁固段模型的危岩稳定性计算[J].人民长江,46(24):72-77.
    黄润秋,陈国庆,唐鹏.2017.基于动态演化特征的锁固段型岩质滑坡前兆信息研究[J].岩石力学与工程学报,36(3):521-533.
    蒋海昆,张流,周永胜.2000.地壳不同深度温压条件下花岗岩变形破坏及声发射时序特征[J].地震学报,22(4):395-403.
    焦明若.2000.孕震过程的数学物理模拟及其在地震预测研究中的应用[D].北京:中国地震局地球物理研究所.
    李培,秦四清,薛雷,等.2016.前震事件判识方法[J].地球物理学进展,31(4):1450-1455.
    李永盛.1995.加载速率对红砂岩力学效应的试验研究[J].同济大学学报(自然科学版),23(3):265-269.
    林鹏,唐春安,陈忠辉,等.1999.二岩体系统破坏全过程的数值模拟和实验研究[J].地震,19(4):413-418.
    刘建新,唐春安,朱万成,等.2004.煤岩串联组合模型及冲击地压机理的研究[J].岩土工程学报,26(2):276-280.
    刘远明,夏才初.2010.直剪条件下非贯通节理岩体岩桥力学性质弱化机制及贯通模型初步研究[J].岩土力学,31(3):695-701.
    梅世蓉.1995.地震前兆场物理模式及前兆分布特征与机制研究进展[J].地震,(S1):2-22.
    泮晓华,薛雷,秦四清,等.2014.潜在锁固型滑坡的类型、形成条件和预判方法研究[J].工程地质学报,22(6):1159-1167.
    秦四清,李培,杨百存,等.2016a.环太平洋、大洋海岭与大陆裂谷地震带主要地震区主震事件判识[J].地球物理学进展,31(2):574-588.
    秦四清,杨百存,吴晓娲,等.2016b.中国大陆某些地震区主震事件判识(Ⅱ)[J].地球物理学进展,31(1):115-142.
    秦四清,杨百存,薛雷,等.2016c.欧亚地震带主要地震区主震事件判识[J].地球物理学进展,31(2):559-573.
    秦四清,王媛媛,马平.2010a.崩滑灾害临界位移演化的指数律[J].岩石力学与工程学报,29(5):873-880.
    秦四清,徐锡伟,胡平,等.2010b.孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索[J].地球物理学报,53(4):1001-1014.
    秦四清,杨百存,吴晓娲,等.2015a.中国大陆某些地震区主震事件判识(Ⅰ)[J].地球物理学进展,30(6):2517-2550.
    秦四清,杨百存,薛雷,等.2015b.台湾海峡地震区大震预测[J].地球物理学进展,30(5):2013-2019.
    宋治平,张国民,刘杰.2011.全球地震目录[M].北京:地震出版社.
    唐春安,王述红,傅宇方.2003.岩石破裂过程数值试验[M].北京:科学出版社.
    唐春安,徐小荷.1988.刚度效应与孕震过程[J].中国地震,4(4):79-85.
    吴晓娲,秦四清,薛雷,等.2016.基于震例探讨大地震的物理机制[J].地球物理学报,59(10):3696-3710.
    吴晓娲,秦四清,薛雷,等.2018.孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征[J].物理学报,67(20):460-469.
    薛雷,秦四清,泮晓华,等.2018.锁固型斜坡失稳机理及其物理预测模型[J].工程地质学报,26(1):179-192.
    杨百存,秦四清,薛雷,等.2018.2017年伊拉克MW7.3地震的类型界定及其震后趋势分析[J].地球物理学报,61(2):616-624.
    臧绍先.1984.地震应力降与岩石破裂应力降[J].地震学报,6(2):182-194.
    张军,艾池,李玉伟,等.2017.基于岩石破坏全过程能量演化的脆性评价指数[J].岩石力学与工程学报,36(6):1326-1340.
    张倬元,王士天,王兰生.1981.工程地质分析原理[M].北京:地质出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700