粉体粒子的物理性质对片剂压缩成型性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Physical Properties of Powder Particles on Compressive Formability of Tablets
  • 作者:何英蒙 ; 皮超 ; 魏郁梦
  • 英文作者:HE Yingmeng;PI Chao;WEI Yumeng;Dept.of Pharmaceutics, School of Pharmacy,Southwest Medical University;
  • 关键词:片剂 ; 粉体粒子 ; 物理性质 ; 压缩成型性 ; 制剂工艺 ; 结合面积 ; 结合强度
  • 英文关键词:tablet;;powder particle;;physical property;;compressive formability;;formulation process;;bonding area;;bonding strength
  • 中文刊名:ZHOU
  • 英文刊名:Chinese Journal of Pharmaceuticals
  • 机构:西南医科大学药学院药剂学教研室;
  • 出版日期:2019-05-28 18:33
  • 出版单位:中国医药工业杂志
  • 年:2019
  • 期:v.50
  • 基金:泸州-西南医大联合项目[2017LZXNYD-T02;2015LZCYD-S09(4/8)]
  • 语种:中文;
  • 页:ZHOU201905002
  • 页数:12
  • CN:05
  • ISSN:31-1243/R
  • 分类号:18-29
摘要
近年来,粉体粒子的物理性质对片剂压缩成型性的影响得到了国内外学者的广泛关注。粉体粒子的各物理性质对片剂压缩成型性的影响通常是通过影响粒子间的结合面积和结合强度来实现的。一般情况下,粒径较小、比表面积大且表面粗糙、不规则的颗粒压缩成型性较好。但粒径小、表面粗糙、不规则等因素会增大粒子间的摩擦力和黏着力,降低粉体粒子的流动性,从而影响片剂的质量。本文通过查阅、整理国内外相关文献资料,分别从粉体粒子的粒径及粒度分布、粒子形态、比表面积、晶型等方面对药物粉体粒子物理性质与片剂压缩成型性之间的关系进行了总结,以期为片剂的生产制备提供参考依据。
        Tablets are the most common solid dosage form due to their advantages of high-precision dosing,manufacturing efficiency, and patient compliance. The preparation of tablets is a typical compaction process of powders.Compaction, an essential manufacturing step in the manufacture of tablets, includes compression(i.e., volume reduction and particle rearrangement) and consolidation(i.e., interparticle bond formation). Two of the important indicators for evaluating the compaction process are the compressibility and tablet forming ability(formability), which are largely affected by the physical properties of compressed powder particles. Therefore, physical property of tablet materials is an important part of the research content of tablet compression molding. On the one hand, the drug powder particles, which have the smaller particle size, larger specific surface area, rougher and more irregular surface, have good compressibility and formability. On the other hand, these factors sometimes would increase the friction and adhesion between particles,therefore reduce the fluidity of powder particles, and affect the quality of tablets. Thus, in order to produce consistently robust tablets, it is crucial to understand the relationship between the physical properties of powder particles(particle size, particle size distribution, particle morphology, specific surface area and crystal form) and the compressibility and formability of tablets. Through retrieving the relative literatures from PubMed, CNKI, CQVIP and WANFANG databases with "powder particle of drug","compressibility and formability","particle size" and "particle size distribution" as keywords, this paper mainly reviews the effects of physical properties of powder particles on compressibility and formability of tablets, so as to provide references for the design and development of tablets.
引文
[1] PERSSON A S. ALDERBORN G. A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression[J].Eur J Pharm Biopharm, 2018,125:28-37.
    [2] MALPURE P S, NIKAM P P, MORE Y M, et al. A review on immediate release drug delivery system[J]. World J Pharm Pharm Sci, 2018, 7(6):428-440.
    [3] LI Z, LIN X, SHEN L, et al. Composite particles based on particle engineering for direct compaction[J]. Int J Pharm,2017, 519(1/2):272-286.
    [4]崔福德,游本刚,寸冬梅.粉体技术在制药工业中的应用[J].中国药剂学杂志:网络版,2003,(2):69-76.
    [5]陈素焯,单金海,王志良,等.粉体技术在直接压片中的应用[J].中国药师,2008,11(3):364-365.
    [6] PATEL S. KAUSHAL A M, BANSAL A K. Compression physics in the formulation development of tablets[J]. Crit Rev Ther Drug Carrier Syst,2006, 23(1):1-65.
    [7]孙艳平,刘华丽.梁爽.等.片剂中粉体压缩性的研究进展[J].中国药剂学杂志:网络版,2013, 11(2):27-34.
    [8]杜焰,冯怡,徐德生,等.药物粉体压缩与结合特性研究进展[J].中国现代应用药学,2012, 29(1):24-30.
    [9]朱蕾,李姝琦,冯怡,等.物料物理性质与片剂成型性的相关性研究[J].中成药,2010, 32(8):1402-1404.
    [10]TARLIER N, SOULAIROL I, SANCHEZ-BALLESTER N,et al. Deformation behavior of crystallized mannitol during compression using a rotary tablet press simulator[J]. Int J Pharm, 2018, 547(1/2):142-149.
    [11] KONER J S, RAJABI-SIAHBOOMI A, BOWEN J, et al.a holistic multi evidence approach to study the fragmentation behaviour of crystalline mannitol[J]. Sci Rep, 201 5, 5:16352.
    [12] TARLIER N, SOULAIROL I, BATAILLE B, et al.Compaction behavior and deformation mechanism of directly compressible textured mannitol in a rotary tablet press simulator[J].Int J Pharm,2015, 495(1):410-419.
    [13] RAJKUMAR AD, REYNOLDS G K, WILSON D, et al.The effect of roller compaction and tableting stresses on pharmaceutical tablet performance[J]. Powder Technol,2019, 341:23-37.
    [14] PEREZ-GANDARILLAS L, PEREZ-GAGO A,MAZOR A,et al. Effect of roll-compaction and milling conditions on granules and tablet properties[J]. Eur J Pharm Biopharm,2016, 106:38-49.
    [15]佀国宁,陈岚,张京红,等.基于Heckel方程的药物粉体压缩特性的理论分析与实验研究[J].中国药学杂志,2014, 49(9):746-752.
    [16]王晨光,邓丽,施春阳,等.药物粉体可压性影响因素及改善策略[J].中国药学杂志,2013,48(11):845-849.
    [17] UPADHYAY P P, SUN C C, BOND A D. Relating the tableting behavior of piroxicam polytypes to their crystal structures using energy-vector models[J].Int J Pharm,2018, 543(1/2):46-51.
    [18]李晓海,赵立杰,冯怡,等.物理性质对微晶纤维素可压缩性和成型性的影响[J].中国药学杂志,2013, 48(2):116-122.
    [19] SUN C C. Decoding powder tabletability:roles of particle adhesion and plasticity[J].J Adhes Sci Technol, 2011.25(4/5):483-499.
    [20]岳国超,陈丽华,管咏梅,等.新型直压辅料的粉体学性质评价[J].中国药房,2014, 25(9):833-836.
    [21] SALBU L, BAUER-BRANDL A, ALDERBORN G, et al. Effect of degree of methoxylation and particle size on compression properties and compactibility of pectin powders[J]. Pharm Dev Technol, 2012,17(3):333-343.
    [22]张益兰,田超,胡丹蓉,等.直接压片辅料LubriTose AN的粉体学评价[J].药学学报,2012, 47(5):640-645.
    [23] OSEI-YEBOAH F, CHANG S Y, SUN C C. A critical examination of the phenomenon of bonding area-bonding strength interplay in powder tableting[J].Pharm Res,2016, 33(5):1126-1132.
    [24] ZHANG J, WU C Y, PAN X, et al. On identification of critical material attributes for compression behaviour of pharmaceutical diluent powders[J]. Materials(Basel),2017,10(7):E845.
    [25] DUDHAT S M. KETTLER C N, DAVE R H. To study capping or lamination tendency of tablets through evaluation of powder rheological properties and tablet mechanical properties of directly compressible blends[J].AAPS PharmSciTech, 2017, 18(4):1177-1189.
    [26] YOHANNES B. GONZALEZ M, ABEBE A, et al. The role of fine particles on compaction and tensile strength of pharmaceutical powders[J]. Powder Technol, 2015, 274:372-378.
    [27]CHOMTO P, NUNTHANID J. Physicochemical and powder characteristics of various citrus pectins and their application for oral pharmaceutical tablets[J]. Carbohydr Polym, 2017,174:25-31.
    [28] SUN C, GRANT D J. Effects of initial particle size on the tableting properties of L-lysine monohydrochloride dihydrate powder[J]. Int J Pharm, 2001, 215(1/2):221-228.
    [29] ABDEL-HAMID S, ALSHIHABI F, BETZ G. Investigating the effect of particle size and shape on high speed tableting through radial die-wall pressure monitoring[J].Int J Pharm, 2011,413(1/2):29-35.
    [30] PATEL N K, UPADHYAY A H. BERGUM J S, et al.An evaluation of microcrystalline cellulose and lactose excipients using an instrumented single station tablet press[J].Int J Pharm, 1994, 110(3):203-210.
    [31] WIACEK J, MOLENDA M, STASIAK M. Effect of number of granulometric fractions on structure and micromechanics of compressed granular packings[J]. Particuology,2018,39:88-95.
    [32] THAKRAL S, THAKRAL N K, SURYANARAYANAN R. Estimation of drug particle size in intact tablets by2-dimensional X-ray diffractometry[J]. J Phann Sci, 2018,107(1):231-238.
    [33] SIDDIQUI M R, ALOTHMAN Z A, RAHMAN N.Analytical techniques in pharmaceutical analysis:A review[J]. Arab J Chem, 2011, 10(Suppl 1):S1409-S1421.
    [34]LAMESIC D, PLANINSEK O,ILIC I G. Modified equation for particle bonding area and strength with inclusion of powder fragmentation propensity[J]. Eur J Pharm Sci,2018, 121:218-227.
    [35] SHAH N H, PHUAPRADIT W, NIPHADKAR M, et al.Effect of particle size on deformation and compaction characteristics of ascorbic acid and potassium chloride:neat and granulated drug[J]. Drug Dev Ind Pharm, 1994,20(10):1761-1776.
    [36] AL-KARAWI C, KAISER T, LEOPOLD C S. A novel technique for the visualization of tablet punch surfaces:Characterization of surface modification, wear and sticking[J]. Int J Pharm, 2017, 530(1/2):440-454.
    [37]李凤生.药物粉体技术[M].北京:化学工业出版社,2007:88.
    [38] CHAUDHARY RS, PATEL C, SEVAK V, et al. Effect of Kollidon VA(?)64 particle size and morphology as directly compressible excipient on tablet compression properties[J]. Drug Dev Ind Pharm, 2018, 44(1):19-29.
    [39] PALUCH K J, TAJBER L, CORRIGAN O I, et al. Impact of alternative solid state forms and specific surface area of high-dose, hydrophilic active pharmaceutical ingredients on tabletability[J]. Mol Pharm,2013,10(10):3628-3639.
    [40] WESTERMARCK S, JUPPO A M, KERVINEN L, et al.Pore structure and surface area of mannitol powder, granules and tablets determined with mercury porosimetrv and nitrogen adsorption[J]. Eur J Pharm Biopharm, 1998,46(1):61-68.
    [41] BOLHUIS GK. ENGFLHART J J, EISSENS A C.Compaction properties of isomalt[J]. Eur J Pharm Biopharm, 2009, 72(3):621-625.
    [42]王洁,赵国巍,蒋且英,等.基于多元数据分析研究肿节风颗粒粉体学性质及其与片剂成型性的相关性[J].中草药,2014, 45(14):1998-2004.
    [43] SUN C, GRANT D J. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs[J].Pharm Res, 2001, 18(3):274-280.
    [44] BUSIGNIES V, LECLERC B, TRUCHON S, et al.Changes in the specific surface area of tablets composed of pharmaceutical materials with various deformation behaviors[J]. Drug Dev IndPharm, 2011, 37(2):225-233.
    [45] HAMAD I M, ARIDA A I, AL-TABAKHA M M. Effect of the lubricant magnesium stearate on changes of specific surface area of directly compressible powders under compression[J]. Jordan J Pharm Sci, 2015, 8(1):21-33.
    [46] BAG P P, CHEN M, SUN C C, et al. Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound[J].CrystEngComm, 2012,14(11):3865-3867.
    [47] WANG C, PAUL S, WANG K, et al. Relationships among crystal structures, mechanical properties, and tableting performance probed using four salts of diphenhydramine[J].Cryst Growth Des, 2017, 17(11):6030-6040.
    [48] UPADHYAY P, KHOMANE K S, KUMAR L, et al.Relationship between crystal structure and mechanical properties of ranitidine hydrochloride polymorphs[J].CrystEngComm, 2013,15(19):3959-3964.
    [49] YADAV J A, KHOMANE K S, MODI S R, et al.Correlating single crystal structure, nanomechanical, and bulk compaction behavior of febuxostat polymorphs[J].Mol Pharm,2017, 14(3):866-874.
    [50] JANKOVIC B, JOKSIMOVIC T, STARE J, et al.Quantification and modeling of nanomechanical properties of chlorpropamideα,β, andγconformational polymorphs[J]. Eur J Pharm Sci,2017, 110:109-116.
    [51]CHATTORAJ S, SUN C C. Crystal and particle engineering strategies for improving powder compression and flow properties to enable continuous tablet manufacturing by direct compression[J]. J Pharm Sci, 2018, 107(4):968-974.
    [52] CHANG S Y,SUN C C. Superior plasticity and tabletability of theophylline inonohydrate[J]. Mol Pharm, 2017, 14(6):2047-2055.
    [53] AHMED H, SHIMPI M R, VELAGA S P. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol[J]. Drug Dev Ind Pharm, 2017,43(1):89-97.
    [54] SANPHUI P, MISHRA M K, RAMAMURTY U, et al.Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals:voriconazole as a case study[J].Mol Pharm, 2015, 12(3):889-897.
    [55]SAHA S, DESIRAJU G R.σ-Hole andπ-hole synthon mimicry in third-generation crystal engineering:design ofelastic crystals[J]. Chemistry, 2011, 23(20):4936-4943.
    [56] OSEI-YEBOAH F, SUN C C. Tabletability modulation through surface engineering[J].J Pharm Sci, 2015.104(8):2645-2648.
    [57] AINUROFIQ A, MAULUDIN R, MUDHAKIR D, et al.Improving mechanical properties of desloratadine via multicomponent crystal formation[J]. Eur J Pharm Sci,2018, 111:65-72.
    [58] PERUMALLA SR, SHI L, SUN C C. Ionized form of acetaminophen with improved compaction properties[J].CrystEngComm, 2012, 14(7):2389-2390.
    [59] SUN C C, HOU H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization[J]. Cryst Growth Des,2008,8(5):1575-1579.
    [60]SERRANO DR, O'CONNELL P, PALUCH KJ,et al.Cocrystal habit engineering to improve drug dissolution and alter derived powder properties[J]. J Pharm Pharmacol,2016, 68(5):665-677.
    [61] MIRZA S, MIROSHNYK I, HEINAMAKI J, et al. Crystalmorphology engineering of pharmaceutical solids:tabletting performance enhancement[J]. Chemistry, 2009, 10(1):113-119.
    [62]MOJIBOLAA,DONGMO-MOMO G,MOHAMMED M,et al. Crystal engineering of L-alanine with L-leucine additive using metal-assisted and microwave-accelerated evaporative crystallization[J]. Cryst Growth Des, 2014, 14(5):2494-2501.
    [63] BESENHARD M O, NEUGEBAUER P,HO C D, et al.Crystal size control in a continuous tubular crystallizer[J].Cryst Growth Des. 2015,15(4):1683-1691.
    [64] SHEOKAND S, MODI S R, BANSAL A K. Quantification of low levels of amorphous content in crystalline celecoxib using dynamic vapor sorption(DVS)[J]. Eur J Pharm Biopharm, 2016,102:77-86.
    [65] DEMUTH B,NAGY ZK, BALOGHA,et al. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations[J]. Int J Pharm, 2015.486(1/2):268-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700