基于科赫边界模型的流动换热数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of flow and heat transfer characteristics based on Koch boundary model
  • 作者:王晓倩 ; 刘益才 ; 毕麟 ; 武曈
  • 英文作者:Wang Xiaoqian;Liu Yicai;Bi lin;Wu Tong;Institute of Refrigeration and Cryogenics,Central South University;
  • 关键词:科赫边界模型 ; 流场 ; 振荡流 ; 强化换热
  • 英文关键词:Koch boundary model;;flow field;;oscillating flow;;enhanced heat transfer
  • 中文刊名:DWGC
  • 英文刊名:Cryogenics
  • 机构:中南大学制冷与低温研究所;
  • 出版日期:2019-06-15
  • 出版单位:低温工程
  • 年:2019
  • 期:No.229
  • 基金:国家自然科学基金资助项目(51776226);; 中南大学研究生自主探索创新项目资金资助(2018zzts491)
  • 语种:中文;
  • 页:DWGC201903012
  • 页数:6
  • CN:03
  • ISSN:11-2478/V
  • 分类号:71-76
摘要
基于分形理论简述了科赫边界模型,采用数值模拟的方法分析了稳定流下科赫边界模型(i=1)温度场、速度场和压力场的分布特点,并与振荡流下科赫边界模型的流动换热情况做对比分析。表明:在不同入口速度的工况下,K1模型的流场呈现流道中间温度低、速度大、压力高,流道边缘温度高、速度小、压力低的现象,且振荡流具备强化换热能力。
        Based on the fractal theory, the Koch boundary model is briefly described. The numerical simulation method is used to analyze the distribution characteristics of the temperature field, velocity field and pressure field in the Koch boundary model(i=1) under steady flow, and the Koch boundary model under the oscillating flow. The flow heat transfer situation was compared and analyzed. It shows that under different inlet velocities, the flow field of K1 model presents the phenomenon of low temperature, high velocity and high pressure in the middte of the flow channel,high temperature of low velocity and low pressure at the edge of the flow channel, and the oscillating flow has enhanced heat transfer ability.
引文
1 林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.Lin Ruitai.Introduction to Heat and Mass Transfer in Porous Media [M].Beijing:Science Press,1995.
    2 施明恒.多孔介质传热传质的进展和展望[J].中国科学基金,1995(1):29-31.Shi Mingheng.Progress and Prospect of Heat and Mass Transfer in Porous Media [J].China Science Foundation,1995(1):29-31.
    3 郁伯铭,姚凯伦.多孔介质中的分形与输运[J].物理,1994,23(5):281-284.Yu Boming,Yao Kailun.Fractal and transport in porous media[J].Physics,1994,23(5):281-284.
    4 张智,张端明,郁伯铭,等.单一颗粒流分形模型及有效热导率计算[J].华中理工大学学报,1997,25(11):107-109.Zhang Zhi,Zhang Duanming,Yu Boming et al.Fractal model of single particle flow and calculation of effective thermal conductivity[J].Journal of Huazhong University of Science and Technology,1997,25(11):107-109.
    5 施明恒,樊荟.多孔介质导热的分形模型[J].热科学与技术,2002(1):28-31.Shi Mingheng,Fan Hui.Fractal model of heat conduction in porous media[J].Journal of Thermal Science and Technology,2002(1):28-31.
    6 Xu H J,Zhao C Y,Vafai K.Analytical study of flow and heat transfer in an annular porous medium subject to asymmetrical heat fluxes[J].Heat Mass Transf.,2017,53:2663-2676.
    7 Xu H J,Qu Z G,Tao W Q.Numerical investigation on self-coupling heat transfer in a counter-flow double-pipe heat exchanger filled with metallic foams[J].Appl.Therm.Eng.,2014,66,43-54.
    8 林瑞泰.多孔介质传热传质引论[M ].北京:科学出版社,1995.Lin Ruitai.Introduction to Heat and Mass Transfer in Porous Media [M].Beijing:Science Press,1995.
    9 Xu H J,Xing Z B,Wang F Q,Cheng Z M.Review on heat conduction,heat convection,thermal radiation and phase change heat transfer of nanofluids in porous media:Fundamentals and applications[J] Chemical Engineering Science.2019,195:462-483.
    10 武曈.基于分形理论的微通道振荡流换热特性分析[D].湖南:中南大学,2017.Wu Tong.Analysis of micro-channel oscillating flow heat transfer characteristics based on fractal theory [D].Hunan:Central South University,2017.
    11 Wang Xuefeng,Zhang Nengli.Numerical analysis of heat transfer in pulsating turbulent flow in a pipe [J].International Journal of Heat and Mass Transfer,2005,48(19-20):3957-3970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700