不同龄组杉木林土壤碳、氮、磷的生态化学计量特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stoichiometric Characterization of Soil C,N,and P of Different Age-group Chinese Fir Plantations
  • 作者:曹小玉 ; 李际平 ; 杨静 ; 闫文德
  • 英文作者:CAO Xiaoyu;LI Jiping;YANG Jing;YAN Wende;College of Forestry, Central South University of Forestry & Technology;National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China;
  • 关键词:杉木林 ; 龄组 ; 土壤养分 ; 化学计量特征
  • 英文关键词:Chinese fir plantation;;Age-group;;Soil nutrient;;Stoichiometric characteristics
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:中南林业科技大学林学院;南方林业生态应用技术国家工程实验室;
  • 出版日期:2019-04-15
  • 出版单位:土壤
  • 年:2019
  • 期:v.51;No.300
  • 基金:湖南省自然科学基金面上项目(2018JJ2673);; 林学重点学科开放基金项目(2016ZD06);; 多功能森林经营湖南金洞林场样板基地作业法研究及示范项目(1692017-6);; 湖南省教育厅项目(16C1668);; 湖南省大学生研究性和创新性实验计划项目(湘教通〔2016〕283号);; 中南林业科技大学人才引进项目(2016YJ075)资助
  • 语种:中文;
  • 页:TURA201902012
  • 页数:7
  • CN:02
  • ISSN:32-1118/P
  • 分类号:82-88
摘要
为了阐明不同发育阶段杉木人工林土壤的生态化学计量特征,在湖南省金洞林场选择立地因子基本一致的杉木幼龄林、中龄林、近熟林、成熟林、过熟林分别设置3块20 m×30 m样地,在每个样地利用S形5点取样法分层(0~15、15~30、30~45、45~60 cm)采取土壤样品,用于测定土壤有机碳、全氮、全磷,并计算化学计量比。结果显示:5个龄组杉木林0~60 cm土壤有机碳、全氮、全磷的含量分别为11.02~14.74、1.65~1.84、0.26~0.35 g/kg。土壤有机碳和全氮的含量随着杉木年龄的增长表现出了先减少后增加再减少的趋势,而土壤全磷的含量则表现为先减少后增加的趋势。土壤有机碳和全氮的含量都表现为随土层加深而下降的规律,土壤有机碳下降幅度中龄林>近熟林>过熟林>成熟林>幼龄林,土壤全氮下降幅度近熟林>过熟林>中龄林>幼龄林>成熟林。而土壤全磷含量随着土层下降没有明显的变化规律。5个龄组杉木林0~60 cm土壤C:N、C:P和N:P变化范围分别为6.94~8.53、49.03~53.07和5.79~7.74,土壤C:N随着杉木年龄的增加表现出了先减少后增加的趋势,土壤C:P和N:P则表现出了先增加后降低的趋势。土壤C:P和N:P随土层下降而减少,而土壤C:N随着土层下降呈现出相对稳定的规律。
        To clarify soil stoichiometric characteristics of different age-group Chinese fir plantations, young, half mature,near mature, mature and over mature Chinese fir plantations with similar site condition were selected in Jindong forest farm of Hunan Province. Three sample plots of 20 m × 30 m were set up in each of these different age-group plantations and soil samples were collected from 0-15, 15-30, 30-45 and 45-60 cm depths, respectively, with S-shaped sampling method(5 sampling points)in each plot. The contents of soil organic carbon(SOC), total nitrogen(N), total phosphorus(P) in depth of 0-60 cm were measured, then ratios of C:N, C:P and N:P were analyzed. Results showed that the contents of SOC, N and P ranged in 11.02-14.74, 1.65-1.84, 0.26-0.35 g/kg, respectively, in different age-group Chinese fir plantations. With the increasing age, the contents of SOC and N decreased first then increased and finally decreased, the content of P decreased first and then increased.The contents of SOC and N decreased with the increase of soil depth, and the decreasing degree of SOC varied in the order of half mature>near mature>over mature>mature>young, and that of N in the order of near mature>over mature>half mature>young>mature, but the content of P varied irregularly with the increase of soil depth. Ratios of C:N, C:P and N:P ranged in 6.94-8.53, 49.03-53.07 and 5.79-7.74, respectively, in different age-group Chinese fir plantations. C:N decreased first and then increased with the increasing age, but C:P and N:P changed oppositely. C:P and N:P decreased with the increase of soil depth,while soil C:N remained stable.
引文
[1]Elser J J,Sterner R W,Gorokhova E,et al.Biological stoichiometry from genes to ecosystems[J].Ecology Letters,2000,3(6):540-550
    [2]Griffiths B S,Spilles A,Bonkowski M.C:N:Pstoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental Plimitation or excess[J].Ecological Processes,2012,1:1-11
    [3]Tessier J T,Raynal D J.Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J].Journal of Applied Ecology,2003,40:523-534
    [4]项文化,黄志宏,闫文德,等.森林生态系统碳氮循环功能耦合研究综述[J].生态学报,2006,26(7):2365-2372
    [5]Yang Y H,Fang J Y,Guo D L,et al.Vertical patterns of soil carbon,nitrogen and carbon:nitrogen stoichiometry in Tibetan grasslands[J].Biogeosciences Discussions,2010,7(1):1-24
    [6]McGroddy M E,Daufresne T,Hedin L O.Scaling of C:N:Pstoichiometry in forests worldwide:Implications of terrestrial Redfield-type ratios[J].Ecology,2004,85(9):2390-2401
    [7]宁晓波,项文化,王光军,等.湖南会同连作杉木林凋落物量20年动态特征[J].生态学报,2009,29(9):5122-5129
    [8]杨玉盛,邱仁辉,俞新妥.不同栽植代数29年生杉木林土壤腐殖质及结合形态的研究[J].林业科学,1999,35(3):116-119
    [9]焦如珍,杨承栋,孙启武,等.杉木人工林不同发育阶段土壤微生物数量及其生物量的变化[J].林业科学,2005,41(6):163-165
    [10]罗亚勇,张宇,张静辉,等.不同退化阶段高寒草甸土壤化学计量特征[J].生态学杂志,2012,31(2):254-260
    [11]张婷,翁月,姚凤娇,等.放牧强度对草甸植物小叶章及土壤化学计量比的影响[J].草业学报,2014,23(2):20-28
    [12]张珂,苏永中,王婷,等.荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征[J].生态学报,2016,36(11):3235-3243
    [13]王丹,王兵,戴伟,等.不同发育阶段杉木林土壤有机碳变化特征及影响因素[J].林业科学研究,2009,22(5):667-671
    [14]盛炜彤,杨承栋,范少辉.杉木人工林的土壤性质变化[J].林业科学研究,2003,16(4):377-385
    [15]Bowman W D.Accumulation and use of nitrogen and phosphorus following fertilization in two alpine tundra communities[J].Oikos,1994,70(2):261-270
    [16]卢同平,史正涛,牛洁,等.我国陆生生态化学计量学应用研究进展与展望[J].土壤,2016,48(l):29-35
    [17]Ncufcldt H,Da Silva J,Ayarza M A,et al.Land-use effects on phosphorus fractions in Cerrado Oxisols[J].Biology and Fertility of Soils,2000,31(1):30-37
    [18]唐光木,徐万里,盛建东,等.新疆绿洲农田不同开垦年限土壤有机碳及不同粒径土壤颗粒有机碳变化[J].土壤学报,2010,47(2):279-285
    [19]郭东艳.退化草原的生态化学计量学研究--以吉林西部退化草地为例[D].长春:吉林大学,2013
    [20]Raven J A,Handley L L,Andrews M.Global aspects of C/Ninteractions determining plant-environment interactions[J].Journal of Experimental Botany,2003,55(394):11-25
    [21]任璐璐,张炳学,韩凤朋,等.黄土高原不同年限刺槐土壤化学计量特征分析[J].水土保持学报,2017,31(2):339-344
    [22]白荣.滇中高原典型植被演替进程中的生态化学计量比特征研究[D].昆明:昆明理工大学,2012
    [23]曹娟,闫文德,项文化,等.湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J].林业科学,2015,51(7):1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700