基于FMECA的水下生产控制系统风险识别
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Risk Identification of Subsea Production Control System Based on Failure Modes,Effects and Criticality Analysis Method
  • 作者:万波 ; 陈斌 ; 陈景皓 ; 杨清峡 ; 段明星
  • 英文作者:WAN Bo;CHEN Bin;CHEN Jing-hao;YANG Qing-xia;DUAN Ming-xing;China Classification Society;National Engineering Laboratory for Subsea Equipment Testing and Detection Technology;Design Company,Offshore Oil Engineering Co.Ltd.;School of Mechanical Engineering,Beijing Institute of Petrochemical Technology;Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil &Gas Development;
  • 关键词:水下生产控制系统 ; 风险识别 ; 失效模式、影响及危害性分析方法 ; 危害性矩阵
  • 英文关键词:subsea production control system;;risk identification;;failure modes,effects and criticality analysis method;;criticality matrix
  • 中文刊名:SYSB
  • 英文刊名:Petro-Chemical Equipment
  • 机构:中国船级社;海洋水下设备试验与检测技术国家工程实验室;海洋石油工程股份有限公司设计公司;北京石油化工学院机械工程学院;深水油气管线关键技术与装备北京市重点实验室;
  • 出版日期:2018-11-25
  • 出版单位:石油化工设备
  • 年:2018
  • 期:v.47;No.311
  • 基金:工业和信息化部海洋工程装备科研项目“水下控制系统与关键设备研发”
  • 语种:中文;
  • 页:SYSB201806003
  • 页数:5
  • CN:06
  • ISSN:62-1078/TQ
  • 分类号:20-24
摘要
为识别水下生产控制系统风险点,改进系统设计及操作管理,避免在油气生产过程中产生严重的经济损失,以流花4-1油田为目标,分析了水下生产控制系统各设备功能和组成结构。采用失效模式、影响及危害性分析方法对水下生产控制系统进行风险识别,分析了各设备失效模式的失效影响、严酷度、危害度及失效原因。通过绘制危害性矩阵寻找对系统危害性较大的失效模式。分析结果表明,主控站Ⅰ类严酷度的危害性最大,对应的失效模式是误操作和无法完成指定操作。可采取加强人员培训、加强设备运行状态监测和定期检测等措施,来提高水下生产控制系统的可靠性。
        In order to identify the risk of subsea production control system,improve the system design and operation management and avoid major economic damage during oil and gas production,the structure and function of each equipment of subsea production control system was analyzed by taking LH 4-1 oilfield as analysis target.Failure modes,effects and criticality analysis method was applied to identify the risk of subsea production control system and analyze failure effects,severity,criticality and failure mechanism of the failure modes of each equipment.The failure mode that was most harmful to the system would be found through drawing the criticality matrix.The results show that severity Ⅰ of master control station is most harmful to the system,and the corresponding failure modes are fault operation and unable to complete the specified operation.Methods,such as reinforcing personal training and equipment operating monitor and periodic detection,should be taken to improve the reliability of subsea production control system.
引文
[1]刘华建.浅谈水下生产控制系统控制与监测传输模式[J].中国海洋平台,2015,30(5):5-8,12.LIU H J.Research of control and monitor mode of subsea control system[J].China offshore platform,2015,30(5):5-8,12.
    [2] http://www.oreda.com/history/[Z/OL].
    [3]琚选择,姜瑛,尹汉军,等.基于API 17N的水下生产系统可靠性与技术风险管理[J].中国海洋平台,2014,29(3):35-39,45.JU X Z,JIANG Y,YIN H J,et al.Subsea production system reliability&technical risk management based on API 17N[J].China offshore platform,2014,29(3):35-39,45.
    [4] Umofia N A.Risk-based reliability assessment of subsea control module for offshore oil and gas production[D].Bedfordshire:Department of Offshore,Process and Energy Engineering,Cranfield University,2014.
    [5] Bitanov A.Reliability study of subsea control module with focus on statistical methods[D].Trondheim:Department of Production and Quality Engineering,Norwegian University of Science and Technology,2015.
    [6]田西强.基于WinCC的水下生产电控系统主控站设计[D].哈尔滨:哈尔滨工程大学,2014.TIAN X Q.The design of master control station in the subsea production electronic control system based on WinCC[D].Harbin:Harbin Engineering University,2014.
    [7]魏会东,苗春生,尹汉军,等.水下脐带缆终端设施的研制及应用[J].石油机械,2015,43(4):69-72.WEI H D,MIAO C S,YIN H J,et al.Development and application of subsea umbilical termination facility[J].China petroleum machinery,2015,43(4):69-72.
    [8]方乐.深水油气田电液复合式水下分配单元设计[D].上海:上海工程技术大学,2015.FANG L.The design of electro-hydraulic multiplexed subsea distribution unit in offshore oil and gas field[D].Shanghai:Shanghai University of Engineering Science,2015.
    [9]冒家友,阳建军,王运.流花4-1油田水下复合电液控制系统设计与应用[J].中国海上油气,2014,26(3):111-114.MAO J Y,YANG J J,WANG Y.Design and application of subsea composite electro-hydraulic control system in LH4-1oilfield[J].China offshore oil and gas,2014,26(3):111-114.
    [10]薛叙.水下电控系统主控站的设计与研究[D].哈尔滨:哈尔滨工程大学,2013.XUE X.Design and research of master control station in the electrohydraulic subsea control system[D].Harbin:Harbin Engineering University,2013.
    [11]郭宏,屈衍,李博,等.国内外脐带缆技术研究现状及在我国的应用展望[J].中国海上油气,2012,24(1):74-78.GUO H,QU Y,LI B,et al.Research situation on domestic and aboard umbilical cord technology and prospect of application in China[J].China offshore oil and gas,2012,24(1):74-78.
    [12]朱露露.水下控制模块测试装置的设计与研究[D].哈尔滨:哈尔滨工程大学,2013.ZHU L L.Design and research of testing device for subsea control module[D].Harbin:Harbin Engineering University,2013.
    [13]系统可靠性分析技术失效模式和影响分析(FMEA)程序:GB/T 7826—2012[S].Analysis techniques for system reliability—Procedure for failure mode and effects analysis(FMEA):GB/T7826—2012[S].
    [14]Det Norske Veritas.Offshore reliability data(4th edition)[M].Trondheim:OREDA Participants,2002.
    [15]故障模式、影响及危害性分析指南:GJB/Z 1391—2006[S].Guide to failure mode,effects and criticality analysis:GJB/Z 1391—2006[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700