泵浦线宽和波长飘移对全固态Tm激光器性能的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of pump bandwidth and wavelength-drift on laser performance of solid-state Tm laser
  • 作者:王娟 ; 黄海洲 ; 黄见洪 ; 葛燕 ; 戴殊韬 ; 邓晶 ; 林紫雄 ; 翁文 ; 林文雄
  • 英文作者:Wang Juan;Huang Haizhou;Huang Jianhong;Ge Yan;Dai Shutao;Deng Jing;Lin Zixiong;Weng Wen;Lin Wenxiong;Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:泵浦线宽 ; 波长飘移 ; 热效应 ; 2μm激光器 ; 激发效率
  • 英文关键词:pump bandwidth;;wavelength-drift;;thermal effect;;2μm laser;;excitation efficiency
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:中国科学院福建物质结构研究所光电材料化学和物理重点实验室;中国科学院大学;
  • 出版日期:2019-04-25
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.294
  • 基金:国家重点研发计划(2017YFB1104502,2016YFB0701004)
  • 语种:英文;
  • 页:HWYJ201904009
  • 页数:9
  • CN:04
  • ISSN:12-1261/TN
  • 分类号:62-70
摘要
为了研究泵浦带宽和波长飘移对全固态激光器的影响,进行了光谱分析和热效应分析,该分析是在准三能级Tm:YAG激光器上进行的。提出光谱模型和晶体热模型,用来研究不同泵浦带宽下Tm激光器的效率和热效应。在Tm激光实验中,结构紧凑、高效率的键合Tm激光器得到验证,中心波长输出在2 013.2 nm。这一激光器的泵浦源是0.1 nm窄线宽的光纤耦合激光二极管,其输出波长是784.9 nm。最大输出功率为7.96 W,斜率效率为62.5%,光-光转换效率为53.3%。当耦合透过率为3%时,激光功率从1.87 W增大到14.93 W,激光波长从2 013.25~2 014.53 nm飘移。当耦合透过率为5%时,输出波长从2 013.91 nm飘移到2 014.26 nm。尽管晶体的最高温度会稍有上升,但0.1 nm窄带宽泵浦可以有效提高激发效率,因此具有更高的激光效率。通过综合考虑泵浦带宽和波长飘移以及增益介质的光谱分布,该研究可以扩展到其他固体激光器来选择泵浦源,有助于实现高效的激光系统。
        In order to study the influence of pump bandwidth and wavelength-drift on the performance of solid-state lasers, theoretical analyses were performed on a quasi-three-level Tm:YAG laser, and the corresponding theoretical models, including both spectral and thermal models, were presented. In the Tm laser experiment, a compact and high-efficiency composite Tm laser operating at 2 013.2 nm was demonstrated, which was end-pumped by volume Bragg gratings(VBGs) locked laser diode(LD) with emission wavelength centered at 784.9 nm and bandwidth as narrow as 0.1 nm(full width at the half maximum, FWHM). A maximum output power of 7.96 W was obtained with a slope efficiency of62.5% and optical conversion efficiency of 53.3%, respectively. The maximum laser wavelength drifted from 2 013.25 nm to 2 014.53 nm when increasing the absorbed pump power from 1.87 W to 14.93 W for the 3% output coupling. As for 5% output coupling, the drift was from 2 013.91 nm to 2 014.26 nm. It was found that a narrow LD bandwidth of 0.1 nm resulted in a more pronounced excitation efficiency and thus a higher laser efficiency, despite that the maximum temperature within the crystal was slightly higher. The present study could be extended to other solid-state lasers for the choice of pump source by comprehensively considering the pump bandwidth and wavelength-drift and the spectral profiles of gain medium, which would be helpful for an efficient laser system.
引文
[1] Ji E, Liu Q, Cao X, et al. Resonantly fiber-coupled diodepumped Ho3+:YLiF4laser in continuous-wave and Qswitched operation[J]. IEEE Journal of Quantum Electronics, 2016, 52(7):1-8.
    [2] Lamrini S, Koopmann P, Schafer M, et al. Efficient highpower Ho:YAG laser directly in-band pumped by a Ga Sbbased laser diode stack at 1.9μm[J]. Applied Physics B,2012, 106(2):315-319.
    [3] Huang H, Huang J, Liu H, et al. Manipulating the wavelength-drift of a Tm laser for resonance enhancement in an intra-cavity pumped Ho laser[J]. Optics Express, 2018,26(5):5758-5768.
    [4] Huang H, Huang J, Liu H, et al. High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelengthlocked laser diode[J]. Laser Physics Letters, 2016, 13(9):095001.
    [5] Fan T Y, Huber G, Byer R L, et al. Continuous-wave operation at 2.1μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12laser at 300 K[J]. Optics Letters, 1987, 12(9):678-680.
    [6] Gao C, Gao M, Zhang Y, et al. Stable single-frequency output at 2.01μm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature[J]. Optics Letters, 2009, 34(19):3029-3031.
    [7] Fan T Y, Huber G, Byer R L, et al. Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG[J]. IEEE Journal of Quantum Electronics, 1988, 24(6):924-933.
    [8] Scholle K, Lamrini S, Koopmann P, et al. 2μm laser sources and their possible applications[C]//Frontiers in Guided Wave Optics and Optoelectronics. InTech, 2010:10.5772/39538.
    [9] Koch G J, Dharamsi A N, Fitzgerald C M, et al. Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide[J]. Applied Optics, 2000, 39(21):3664-3669.
    [10] Theisen D, Ott V, Bernd H W, et al. CW high power IRlaser at 2μm for minimally invasive surgery[C]//European Conference on Biomedical Optics. Optical Society of America, 2003:5142_96.
    [11] Liu J, Shen D, Huang H, et al. Highly efficient Tm-doped yttrium aluminum garnet ceramic laser based on the novel fiber-bulk hybrid configuration[J]. Applied Physics Express,2013, 6(9):092107.
    [12] Elder I F, Payne M J P. Lasing in diode-pumped Tm:YAP,Tm, Ho:YAP and Tm, Ho:YLF[J]. Optics Communications,1998, 145(1-6):329-339.
    [13] Sato A, Asai K, Itabe T. Double-pass-pumped Tm:YAG laser with a simple cavity configuration[J]. Applied Optics,1998, 37(27):6395-6400.
    [14] Rustad G, Stenersen K. Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion[J]. IEEE Journal of Quantum Electronics, 1996,32(9):1645-1656.
    [15] Zhu H, Zhang Y, Zhang J, et al. 1.96μm Tm:YAG ceramic laser[J]. IEEE Photonics Journal, 2017, 9(6):1506607.
    [16] Wu C, Ju Y, Li Y, et al. Diode-pumped Tm:LuAG laser at room temperature[J]. Chinese Optics Letters, 2008, 6(6):415-416.
    [17] Yu H, Petrov V, Griebner U, et al. Compact passively Qswitched diode-pumped Tm:LiLuF4laser with 1.26 mJ output energy[J]. Optics Letters, 2012, 37(13):2544-2546.
    [18] Soulard R, Tyazhev A, Doualan J L, et al. 2.3μm Tm3+:YLF mode-locked laser[J]. Optics Letters, 2017, 42(18):3534-3536.
    [19] Zhang Haikun, Huang Jiyang, Zhou Cheng, et al. CW modelocked Tm:YAP laser with semiconductor saturable-absorber at around 2μm[J]. Infrared and Laser Engineering, 2018,47(5):0505003.(in Chinese)
    [20] Yumoto M, Saito N, Urata Y, et al. 128 mJ/Pulse, laserdiode-pumped, Q-switched Tm:YAG laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015,21(1):364-368.
    [21] Zhan M J, Zou Y W, Lin Q F, et al. Ti:sapphire pumped passively mode-locked Tm:YAG ceramic laser[J]. Acta Physica Sinica, 2014, 63(1):014205.(in Chinese)
    [22] Cao D, Peng Q, Du S, et al. A 200 W diode-side-pumped CW 2μm Tm:YAG laser with water cooling at 8℃[J].Applied Physics B, 2011, 103(1):83-88.
    [23] Beach R J, Sutton S B, Skidmore J A, et al. High-power2-μm wing-pumped Tm:YAG laser[C]//Conference on Lasers and Electro-Optics, 1996:319.
    [24] Honea E C, Beach R J, Sutton S B, et al. 115-W Tm:YAG diode pumped solid state laser[J]. IEEE Journal of Quantum Electronics, 1997, 33(9):1592-1600.
    [25] Zhang X F, Xu Y T, Li C M, et al. A continuous-wave diode-side-pumped Tm:YAG laser with ouput 51 W[J].Chinese Physics Letters, 2008, 25(10):3673-3675.
    [26] Wang C, Niu Y, Du S, et al. High power diode side pumped rod Tm:YAG laser at 2.07μm[J]. Applied Optics, 2013, 52(31):7494-7497.
    [27] Eichhorn M. Quasi three level solid state lasers in the near and mid infrared based on trivalent rare earth ions[J].Applied Physics B, 2008, 93(2-3):269.
    [28] Eichhom M, Kieleck C, Hirth A. OP-GaAs OPO pumped by a Q-switched Tm, Ho:Silica fiber laser[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009:CWH2.
    [29] Cheng X, Shang J, Jiang B. Analysis of the thermal effects in diode-pumped Tm:YAG ceramic slab lasers[J]. Laser Physics, 2017, 27(3):035803.
    [30] Huang H Z, Huang J H, Liu H G, et al. High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode[J]. Laser Physics Letters,2016, 13(9):095001.
    [31] Honea E C, Beach R J, Sutton S B, et al. 115-W Tm:YAG diode-pumped solid-state laser[J]. IEEE Journal of Quantum Electronics, 1997, 33(9):1592-1600.
    [32] Caird J, Deshazer L, Nella J. Characteristics of roomtemperature 2.3-μm laser emission from Tm3+in YAG and YAlO3[J]. IEEE Journal of Quantum Electronics, 1975, 11(11):874-881.
    [33] Li B, Ding X, Sun B, et al. 12.45 W wavelength-locked878.6 nm laser diode in-band pumped multisegmented Nd:YVO4laser operating at 1342 nm[J]. Applied Optics, 2014,53(29):6778-6781.
    [34] Scholle K, Fuhrberg P. In-band pumping of high-power Ho:YAG lasers by laser diodes at 1.9μm[C]//Conference on Lasers and Electro-optics. Optical Society of America, 2008:CTuAA1.
    [35] Zhang Haiwei, Sheng Quan, Shi Wei, et al. Thermal distribution characteristic of high-power laser double-cladding thulium-doped fiber amplifier[J]. Infrared and Laser Engineering, 2017, 46(6):0622004.
    [36] Cheng X, Shang J, Jiang B. Analysis of the thermal effects in diode-pumped Tm:YAG ceramic slab lasers[J]. Laser Physics, 2017, 27(3):035803.
    [37] Pfistner C, Weber R, Weber H P, et al. Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods[J]. IEEE Journal of Quantum Electronics, 1994,30(7):1605-1615.
    [38] Huang H, Gao P, Liu H G, et al. Validation of spectrum method for improving efficiency of continuous-wave&Qswitched Tm-doped yttrium aluminum garnet laser[J].Science China Physics, Mechanics&Astronomy, 2018, 61(3):034221.
    [39] Chen X, Wu J, Wu C, et al. Analysis of thermal effects in a pulsed laser diode end pumped single-ended composite Tm:YAG laser[J]. Laser Physics, 2015, 25(4):045003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700