高纯钽退火过程中储存能演变及其对再结晶行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stored energy evolution of high-purity tantalum during annealing and its effect on recrystallization behavior
  • 作者:祝佳林 ; 毛宇 ; 刘施峰 ; 柳亚辉 ; 林男 ; 邓超
  • 英文作者:ZHU Jia-lin;MAO Yu-cheng;LIU Shi-feng;LIU Ya-hui;LIN Nan;DENG Chao;College of Materials Science and Engineering, Chongqing University;School of Instrument Science and Opto-electronics, Beihang University;Electron Microscopy Center of Chongqing University, Chongqing University;
  • 关键词:高纯钽 ; 周向轧制 ; 预回复温度 ; 储存能 ; 微观组织
  • 英文关键词:high-purity tantalum;;clock rolled;;pre-recovery temperature;;stored energy;;microstructure
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:重庆大学材料与科学工程学院;北京航空航天大学仪器科学与光电工程学院;重庆大学电子显微镜中心;
  • 出版日期:2019-01-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:v.29;No.238
  • 基金:国家自然科学基金资助项目(51421001,51701032);; 重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0094)~~
  • 语种:中文;
  • 页:ZYXZ201901007
  • 页数:12
  • CN:01
  • ISSN:43-1238/TG
  • 分类号:60-71
摘要
将87%周向轧制钽板分别加热至700、800和900℃进行预回复处理,随后,将所有样品在1300℃保温30 min进行再结晶退火处理。应用X射线峰形分析(XLPA)定量计算经不同温度预回复处理后样品1/4厚度层的储存能。此外,利用电子背散射衍射(EBSD)和透射电子显微(TEM)技术表征了预回复和再结晶态样品的微观组织。结果表明:随着预回复温度的升高,一方面,亚晶数目逐渐增加;另一方面,{111}(111//ND(板法向))和{100}(100//ND)取向晶粒内部的储存能明显减小,且两者的比值也逐渐降低。因此,再结晶晶粒尺寸不断减小且晶粒形貌也趋近等轴状。但过高的预回复温度(900℃)使后续再结晶组织中出现了较强的{111}织构带,经过800℃预回复处理后的再结晶微观组织相对较为均匀,最有利于钽溅射靶材的应用。
        High-purity tantalum plates were clock rolled to 87% reduction in thickness. Then, the samples were heated up to 700, 800 and 900 ℃ in the furnace, respectively, and were all annealed at 1300 ℃ for 30 min to get the recrystallization microstructure. X-ray line profile analysis(XLPA) was adopted to quantify the bulk stored energy of a quarter of the thickness of tantalum plates at different pre-recovery temperatures, combing with the electron back-scattered diffraction(EBSD) and transmission electron microscopy(TEM) to characterize the pre-recovery and recrystallization microstructure. The results show that the number of subgrains increases gradually with the increase of pre-recovery temperature and the stored energy gap of {111}([111]//ND, ND is normal direction) and {100}([100]//ND)orientation grain decreased obviously, which effectively reduces the subsequent driving force of recrystallization.Therefore, the recrystallization grain size gradually decreases and the grain morphology is close to be equiaxed. However,the high pre-recovery temperature(900 ℃) leads to a strong {111} texture bands in recrystallization microstructure,while the recrystallization microstructure is relatively uniform through pre-recovering of 800 ℃, which is beneficial to the application of tantalum sputtering target.
引文
[1]张行健,姜国圣,王志法.钽的加工硬化速率及其显微组织[J].中国有色金属学报,2006,16(3):442-446.ZHANG Xing jian,JIANG Guo sheng,WANG Zhi fa.Work hardening rate and microstructure of tantalum[J].The Chinese Journal of Nonferrous Metals,2006,16(3):442-446.
    [2]MICHALUK C A.Correlating discrete orientation and grain size to the sputter deposition properties of tantalum[J].Journal of Electronic Materials,2002,31(1):2-9.
    [3]何季麟.钽铌电子材料新进展(Ⅱ)[J].中国有色金属学报,2004,14(S1):291-300.HE Ji-lin.New development of tantalum and niobium electronic materials[J].The Chinese Journal of Nonferrous Metals,2004,14(S1):291-300.
    [4]LI Zhao-bo,ZHANG Chun-heng,LI Gui-peng,Tong Lei.Research on grain size controlling process of niobium target used for sputtering and coating[J].Development&Application of Materials,2010.
    [5]MATHAUDHU S N,HARTWIG K T.Grain refinement and recrystallization of heavily worked tantalum[J].Materials Science and Engineering A,2006,426(1):128-142.
    [6]MATHAUDHU S N,BARBER R E,HARTWIG K T.Microstructural refinement of tantalum for Nb/sub 3/Sn superconductor diffusion barriers[J].IEEE Transactions on Applied Superconductivity,2005,15(2):3434-3437.
    [7]FAN Hai-yang,LIU Shi-feng,LI Li-juan,DENG Chao,LIUQing.Largely alleviating the orientation dependence by sequentially changing strain paths[J].Materials&Design,2016,97:464-472.
    [8]HUANG X,HANSEN N.Grain orientation dependence of microstructure in aluminium deformed in tension[J].Scripta Materialia,1997,37(1):1-7.
    [9]PEETERS B,BACROIX B,TEODOSIU C,HOUTTE P V,AERNOUDT E.Work-hardening/softening behavior of b.c.c.polycrystals during changing strain[J].Acta Materialia,2001,49(9):1621-1632.
    [10]SEVILLANO J G,HOUTTE P V,AERNOUDT E.Inhomogeneity in the stored energy of deformed BCC-metals[J].Scripta Metallurgica,1976,10(8):775-778.
    [11]RAJMOHAN N,HAYAKAWA Y,SZPUNAR J A,ROOT J H.Neutron diffraction method for stored energy measurement in interstitial free steel[J].Acta Materialia,1997,45(6):2485-2494.
    [12]BORéBLY A,DRIVER J H.X-ray diffraction analysis of intergranular strains in cold-rolled ultra high purity iron[J].Materials Science and Engineering A,2004,387(1):231-234.
    [13]DENG Chao,LIU Shi-feng,HAO Xiao-bo,JI Jing-li,ZHANG Zhi-qing,LIU Qing.Orientation dependence of stored energy release and microstructure evolution in cold rolled tantalum[J].International Journal of Refractory Metals&Hard Materials,2014,46(3):24-29.
    [14]张新明,袁韧,周卓平.硅元素对钽丝再结晶行为的影响[J].中国有色金属学报,2002,12(6):1104-1108.ZHANG Xin-ming,YUAN Ren,ZHOU Zhuo-ping.Effects of silicon on recrystallization behavior of tantalum wires during annealing[J].The Chinese Journal of Nonferrous Metals,2002,12(6):1104-1108.
    [15]LIU Shi-feng,FAN Hai-yang,DENG Chao,HAO Xiao-bo,GUO Yu,LIU Qing.Through-thickness texture in clock-rolled tantalum plate[J].International Journal of Refractory Metals&Hard Materials,2015,48:194-200.
    [16]LIU Ya-hui,LIU Shi-feng,ZHU Jia-lin,DENG Chao,FANHai-yang,CAO Lin-fei,LIU Qing.Strain path dependence of microstructure and annealing behavior in high purity tantalum[J].Materials Science&Engineering A,2017:707.
    [17]SANDIM H R Z,MARTINS J P,PADILHA A F.Orientation effects during grain subdivision and subsequent annealing in coarse-grained tantalum[J].Scripta Materialia,2001,45(6):733-738.
    [18]SANDIM H R Z,PADILHA A F,RANDLE V,BLUM W.Grain subdivision and recrystallization in oligocrystalline tantalum during cold swaging and subsequent annealing[J].International Journal of Refractory Metals&Hard Materials,1999,17(6):431-435.
    [19]WILKINSON A J,DINGLEY D J.Quantitative deformation studies using electron back scatter patterns[J].Acta Metallurgica Et Materialia,1991,39(12):3047-3055.
    [20]CHOI S H.Monte carlo technique for simulation of recrystallization texture in interstitial free steels[J].Materials Science Forum,2002,408/412:469-474.
    [21]PEGEL B.Stacking faults on{110 planes in the B.C.C.lattice[J].Physica Status Solidi,1968,28(2):603-609.
    [22]HUMPHREYS F J,HATHERLY M.Recrystallization and Related Annealing Phenomena[M].2nd ed.Netherlands:Elsevier,2004:219-224.
    [23]EVERY R L,HATHERLY M.Oriented nucleation in low-carbon steels[J].Texture,1974,1(3):233-243.
    [24]MART??NEZ-DE-GUERENU A,ARIZTI F,D??AZ-FUENTES M,GUTIéRREZ I.Recovery during annealing in a cold rolled low carbon steel.Part I:Kinetics and microstructural characterization[J].Acta Materialia,2004,52(12):3657-3664.
    [25]SRINIVASAN R,VISWANATHAN G B,LEVIT V I,FRASERH L.Orientation effect on recovery and recrystallization of cold rolled niobium single crystals[J].Materials Science and Engineering A,2009,507(1/2):179-189.
    [26]OKUDA K,ROLLETT A D.Monte Carlo simulation of elongated recrystallized grains in steels[J].Computational Materials Science,2005,34(3):264-273.
    [27]SINCLAIR C W,MITHIEUX J D,SCHMITT J H,BRéCHET Y.Recrystallization of stabilized ferritic stainless steel sheet[J].Metallurgical&Materials Transactions A,2005,36(11):3205-3215.
    [28]FAN Hai-yang,LIU Shi-feng,DENG Chao,WU Xue-dong,CAO Lin-fei,LIU qing.Quantitative analysis:How annealing temperature influences recrystallization texture and grain shape in tantalum[J].International Journal of Refractory Metals&Hard Materials,2018,72:244-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700