舰船磁场磁单极子阵列法建模技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Magnetic monopole array model for modeling ship magnetic signatures
  • 作者:郭成豹 ; 殷琦琦
  • 英文作者:Guo Cheng-Bao;Yin Qi-Qi;School of Electrical Engineering, Naval University of Engineering;
  • 关键词:静磁场 ; 等效源法 ; 磁单极子 ; 舰船磁特征
  • 英文关键词:magnetostatic field;;equivalent source method;;magnetic monopole;;ship's magnetic signature
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:海军工程大学电气工程学院;
  • 出版日期:2019-06-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:51277176)资助的课题~~
  • 语种:中文;
  • 页:WLXB201911012
  • 页数:10
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:106-115
摘要
针对现有舰船磁场等效源反演建模方法存在的精度较低和适应性不强的问题,提出了一种舰船磁场磁单极子阵列反演建模新方法,按照舰船铁磁结构布置磁单极子阵列,采用正则化技术进行舰船磁场的反演建模.建立了三种典型的磁单极子阵列形式:舰船水线平面上的长方形阵列、包围船体的长方体阵列、按照舰船铁磁结构分布的三维船体阵列.理论分析表明,三维船体磁单极子阵列减少了等效磁源设置的盲目性,所得到的等效磁源与真实磁源一致性高,能够更大程度地复现舰船磁场完整信息.利用典型虚拟舰船的磁场进行了验证试验,结果表明所提出的三维船体磁单极子阵列比长方形或长方体阵列具有更高的精度和适应性,特别是能实现舰船远磁场与近磁场、舰船上方和下方磁场之间的相互精确转换.所提出的三维船体磁单极子阵列模型具有复杂度小,建模简单,布置灵活的独特优势,为舰船磁场高精度反演建模、磁场定位等的数据处理和解释提供了新的技术选择.
        Aiming at the problems of low accuracy and low adaptability of the existing ship magnetic field inversion modeling methods with equivalent sources, a new method of inversion modeling of magnetic monopole array of ship magnetic fields is proposed. Three-dimensional ship magnetic monopole array is arranged according to the ship ferromagnetic structure, and the inversion prediction model of ship magnetic fields is established by regularization technology. Three typical forms of magnetic monopole arrays are established: rectangular magnetic monopole array on the horizontal surface of the draft line, cuboid magnetic monopole array enclosing the ship hull, three-dimensional ship magnetic monopole array distributed according to the ship's ferromagnetic structure. The theoretical analysis shows that the three-dimensional ship magnetic monopole array reduces the blindness of the equivalent magnetic source setting, and the obtained equivalent magnetic source is highly consistent with the real magnetic source, which can reproduce the complete magnetic field information of the ship to a greater extent. The magnetic field of a typical virtual ship is applied to the validation test. The results show that the proposed three-dimensional ship magnetic monopole array has higher precision and adaptability than the rectangular or cuboid magnetic monopole array. In particular, the proposed three-dimensional ship magnetic monopole array can realize the mutual conversion between the near and far magnetic fields, and between the magnetic fields above and below the ship. The proposed three-dimensional ship magnetic monopole array model has the unique advantages of small complexity, simple modeling and flexible layout, and it provides an alternative method for the high-precision data processing and explanation to the inversion modeling of ship magnetic fields, ship magnetic field positioning, et al.
引文
[1]Holmes J J 2007 Modeling A Ship’s Ferromagnetic Signatures(Maryland:Morgan&Claypool Publishers)p3
    [2]Holmes J J 2008 Reduction of a Ship’s Magnetic Field Signatures(Maryland:Morgan&Claypool Publishers)p8
    [3]Nixon D A,Baker F E 1981 J.Appl.Phys.52 539
    [4]Kildishev A V,Nyenhuis J A,Morgan M A 2002 IEEETrans.Magn.38 2465
    [5]Chen J,Lu X W 2009 Acta Phys.Sin.58 3839(in Chinese)[陈杰,鲁习文2009物理学报58 3839]
    [6]Synnes S A 2008 IEEE Trans.Magn.44 2277
    [7]Kamondetdacha R,Kildishev A V,Nyenhuis J A 2004 IEEETrans.Magn.40 2176
    [8]Jiang M Z,Lin C S 2003 Journal of WUT(Information&Management Engineering)25 168(in Chinese)[蒋敏志,林春生2003武汉理工大学学报·信息与管理工程版25 168]
    [9]Wei Y L,Chen J C,Li G Y,Wang Y D,Zeng X J 2017Computer Measurement&Control 25 213(in Chinese)[隗燕琳,陈敬超,李贵乙,王彦东,曾小军2017计算机测量与控制25 213]
    [10]Lin C S,Gong S G 2007 Ships Physical Fields(Beijing:The Publishing House of Ordnance Industry)p233(in Chinese)[林春生,龚沈光2007舰船物理场(北京:兵器工业出版社)p233]
    [11]Dai Z H,Zhou S H,Shan S 2018 Acta Electronica Sinica 461524(in Chinese)[戴忠华,周穗华,单珊2018电子学报461524]
    [12]Wu Z D,Zhou S H,Guo H S 2013 Journal of Wuhan University of Technology 35 67(in Chinese)[吴志东,周穗华,郭虎生2013武汉理工大学学报35 67]
    [13]Alqadah H F,Valdivia N P,Williams E G 2016 Progress In Electromagnetics Research B 65 109
    [14]Chadebec O,Coulomb J L,Bongiraud J P,Cauffet G,Thiec P L 2002 IEEE Trans.Magn.38 1005
    [15]Chadebec O,Couloumb J L,Cauffet G,Bongiraud J P 2003IEEE Trans.Magn.39 1634
    [16]Vuillermet Y,Chadebec O,Coulomb J L,Rouve L L,Cauffet G,Bongiraud J P,Demilier L 2008 IEEE Trans.Magn.441054
    [17]Yang C S,Lee K J,Jung G,Chung H J,Park J S,Kim D H2008 J.Appl.Phys.103 07D905
    [18]Guo C B,Xiao C H,Liu D M 2008 Acta Phys.Sin.57 4182(in Chinese)[郭成豹,肖昌汉,刘大明2008物理学报57 4182]
    [19]Dirac P A M 1931 Proc.Roy.Soc.A 133 60
    [20]Dirac P A M 1948 Phys.Rev.74 817
    [21]Tikhonov A N,Arsenin V Y 1977 Math.Comput.32 491
    [22]Hansen P C,O'Leary D P 1993 SIAM J.Sci.Comput.141487
    [23]Guo C B,Zhou W C 2017 Acta Armamentarii 38 1988(in Chinese)[郭成豹,周炜昶2017兵工学报38 1988]
    [24]Guo C B,Liu D M 2012 Acta Armamentarii 33 912(in Chinese)[郭成豹,刘大明2012兵工学报33 912]
    [25]Guo C B,Liu D M 2014 Acta Armamentarii 35 1638(in Chinese)[郭成豹,刘大明2014兵工学报35 1638]
    [26]Chadebec O,Coulomb J,Janet F 2006 IEEE Trans.Magn.42 515
    [27]Morandi A,Fabbri M,Ribani P L 2010 IEEE Trans.Magn.46 3848
    [28]Zhao K Z,Vouvakis M N,Lee J F 2005 IEEE Trans.Electromagn.Compat.47 763

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700