吹氩钢包内气泡聚并破碎和运动行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bubble Coalescence/Breakage and Movement in the Ladle with Argon Blowing
  • 作者:勾大钊 ; 王伟先 ; 耿佃桥 ; 雷洪
  • 英文作者:GOU Da-zhao;WANG Wei-xian;GENG Dian-qiao;LEI Hong;Key Laboratory of Electromagnetic Processing of Materials,Ministry of Education,Northeastern University;School of Metallurgy,Northeastern University;Beiman Special Steel Company Limited,Dongbei Special Steel Group;
  • 关键词:钢包 ; 气泡 ; 聚并破碎 ; Luo模型 ; 群体平衡模型(PBM)
  • 英文关键词:ladle;;bubble;;coalescence and breakage;;Luo model;;PBM
  • 中文刊名:DBDX
  • 英文刊名:Journal of Northeastern University(Natural Science)
  • 机构:东北大学材料电磁过程研究教育部重点实验室;东北大学冶金学院;东北特钢集团北满特殊钢有限责任公司;
  • 出版日期:2018-02-15
  • 出版单位:东北大学学报(自然科学版)
  • 年:2018
  • 期:v.39;No.329
  • 基金:国家自然科学基金与宝钢集团有限公司联合资助项目(U1460108);; 国家自然科学基金资助项目(51304038)
  • 语种:中文;
  • 页:DBDX201802010
  • 页数:5
  • CN:02
  • ISSN:21-1344/T
  • 分类号:46-50
摘要
基于Euler-Euler双流体模型及PBM模型,建立了吹氩钢包流场数学模型.此模型考虑了吹氩钢包内气液两相之间的曳力、升力、湍流扩散力和气泡的聚并和破碎等因素.研究了气泡聚并破碎对钢包钢液内含气率、气泡速度和混匀时间的影响,并与定气泡直径下的流场进行对比.数值结果表明:PBM模型的预测值更接近实验结果;钢包内气泡分布为中心区域气泡直径大,从中心到气液边界处气泡直径逐渐减小,气液两相区边界处直径最小;在钢包轴线上气泡速度先急剧增加然后缓慢减小,在接近液面处气泡速度又急剧减小.
        A mathematical model for the gas-liquid flow field in the ladle with argon blowing was built based on the Euler-Euler model and population balance model( PBM),which considered the effects of the drag force,lift force,turbulent dispersion force and bubble coalescence and breakage in ladle with argon blowing. The effects of bubble coalescence and breakage on the gas holdup,bubble velocity and mixing time were investigated and further compared with those from the constant diameter model. The numerical results show that the predicted data of the PBM agrees well with the experimental one. The bubble diameter is the largest one in center area and reduces gradually from the center to the gas-liquid interface,therefore it becomes the smallest one at gasliquid interface in the ladle. At the ladle central axis,the bubble velocity firstly increases drastically and then decreases gradually,however,it decreases greatly near the free surface.
引文
[1]Chung S L,Shin Y H,Yoon J K.Flow characteristics by induction and gas stirring in ASEA-SKF ladle[J].ISIJ International,1992,32(12):1287-1296.
    [2]Alexiadis A,Gardin P,Domgin J F.Spot turbulence,break-up and coalescence of bubbles released from a porous plug injector into a gas-stirred ladle[J].Metallurgical and Materials Transactions B,2004,35(5):949-956.
    [3]Alexiadis A.Bubble dispersion patterns in bubbly-flow released from a porous plug into a gas-stirred ladle[J].Applied Mathematical Modelling,2007,31(8):1534-1547.
    [4]Aniruddha M,Eric W G,Kumar D,et al.Detailed modeling of gas flow in liquid steel:bubble size distribution and voidage calculation[J].Steel Research International,2005,76(1):22-32.
    [5]Li L M,Liu Z Q,Li B K,et al.Water model and CFD-PBM coupled model of gas-liquid-slag three-phase flow in ladle metallurgy[J].ISIJ International,2015,55(7):1337-1446.
    [6]Schiller L,Naumann Z.A drag coefficient correlation[J].VDI Zeitung,1935,77:318-320.
    [7]Tomiyama A.Struggle with computational bubble dynamics[J].Multiphase Science and Technology,1998,10(4):369-405.
    [8]Simonin O,Viollet P L.Predictions of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow[J].Numerical Methods for Multiphase Flows,1990,91(2):65-82.
    [9]Fluent Inc.Fluent 14.0 user manual[EB/OL].[2016-07-16].https://zh.scribd.com/doc/140163383/Ansys-fluent-14-0-Users-Guide.
    [10]Luo H.Coalescence,breakup and liquid circulation in bubble column reactors[D].Trondheim:Norwegian Institute of Technology,1993.
    [11]Luo H,Svendsen H F.Theoretical model for drop and bubble breakup in turbulent dispersions[J].AICh E Journal,1996,42(5):1225-1233.
    [12]Hsiao T C,Lehner T,Kjellberg B.Fluid flow in ladles—experimental results[J].Scandinavian Journal of Metallurgy,1980,9(3):105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700