液相中气泡上升行为与界面传质:实验研究与数值计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rising behavior of bubbles and interfacial mass transfer in liquid:experimental study and numerical simulation
  • 作者:李鑫 ; 张攀 ; 陈光辉 ; 李建隆
  • 英文作者:LI Xin;ZHANG Pan;CHEN Guanghui;LI Jianlong;College of Chemical Engineering, Qingdao University of Science and Technology;Shandong Key Laboratory of Multi-phase Fluid Reaction Engineering and Separation Engineering;College of Electromechanical Engineering, Qingdao University of Science and Technology;
  • 关键词:气泡 ; 上升行为 ; 传质 ; 多相流 ; 模型
  • 英文关键词:bubble;;rising behavior;;mass transfer;;multiphase flow;;model
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:青岛科技大学化工学院;山东省多相流体反应与分离工程重点实验室;青岛科技大学机电工程学院;
  • 出版日期:2019-02-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.329
  • 基金:山东省高等学校科技计划一般项目A类(J17KA107);; 青岛市科技成果转化计划-科技惠民专项(16-6-2-50-nsh)
  • 语种:中文;
  • 页:HGJZ201902004
  • 页数:12
  • CN:02
  • ISSN:11-1954/TQ
  • 分类号:36-47
摘要
在工业生产过程中,气泡在液相中的上升行为及气液界面的传质行为极为常见。本文针对不同条件下气泡上升过程的实验研究方法以及数值计算方法进行了总结。从实验与数值计算的角度,综述了单气泡上升过程的影响因素、多气泡上升过程聚并与破裂的现象和机理以及工业装置中气液两相流型和气泡特性,并对传质模型进行了归纳,主要关注了气侧-界面传质模型的研究现状。综述结果表明:当前对于单气泡上升行为的研究较为充分,而对于多气泡的行为机理的研究尚需深入。此外,受到研究手段的限制,进行气侧-界面传质模型研究具有一定挑战性。针对当前的相关研究进展和存在的问题,对今后气泡上升行为和传质行为的研究提出以下建议,即开展气泡聚并与破裂可控性研究,强化对气侧-界面传质过程的研究,包括泡内流体行为可视化研究和相关传质模型的建立。
        In the industrial processes,rising behavior of bubbles in the liquid and mass transfer on the gas-liquid interface are very common.In this paper,experimental methods and numerical simulation methods are summarized under different conditions.In terms of experiments and numerical simulations,impact factors of single bubble rising behavior,phenomenon and mechanism of coalescence and break up for multiple bubbles,bubble flow pattern and properties in industrial devices,and mass transfer model,especially for gas-interface mass transfer model,are summed up.The results show that the studies about single bubble behavior are sufficient while for the multiple bubbles,more works need to be done.Besides,it is challenging to establish gas-interface mass transfer model due to the limit of research tools.According to the relative research progress and problems,the following suggestions about the future research directions conducting controllability study of coalescence and break up for bubbles,and strengthening of research on gas-interface mass transfer including the research of visualization of the internal flow and convective mass transfer in bubbles.
引文
[1]áLVAREZ E, SANJURJO B, CANCELA A, et al. Mass transferand influence of physical properties of solutions in a bubblecolumn[J]. Chemical Engineering Research and Design, 2000, 78(6):889-893.
    [2] CHU F M, YANG L J, DU X Z, et al. Mass transfer and energyconsumption for CO2absorption by ammonia solution in bubble column[J]. Applied Energy, 2017, 190:1068-1080.
    [3] ZHANG L H, LI Z J, YANG N, et al. Hydrodynamics and masstransfer performance of vapor-liquid flow of orthogonal wave traycolumn[J]. Journal of the Taiwan Institute of Chemical Engineers,2016, 63:6-16.
    [4]付涛涛,马友光,朱春英. T形微通道内气泡(液滴)生成机理的研究进展[J].化工进展, 2011, 30(11):2357-2363.FU Taotao, MA Youguang, ZHU Chunying. Progress in bubble(droplet)formation mechanism in T-shaped microchannels[J].Chemical Industry and Engineering Progress, 2011, 30(11):2357-2363.
    [5]庞明军,孙涛,代军荣.槽道湍流内气泡瞬态受力数值研究[J].化工进展, 2016, 35(7):1980-1985.PANG Mingjun, SUN Tao, DAI Junrong. Numerical investigationon instantaneous forces exerting on bubbles in channel turbulentflows[J]. Chemical Industry and Engineering Progress, 2016, 35(7):1980-1985.
    [6] KOIDE K, MOROOKA S, UEYAMA K, et al. Behavior of bubblesin large scale bubble column[J]. Journal of Chemical Engineeringof Japan, 1978, 12:98-104.
    [7] ZHANG X B, GUO K, QI W Z, et al. Gas holdup, bubblebehaviour, and mass transfer characteristics in a two-stageinternal loop airlift reactor with different screens[J]. The CanadianJournal of Chemical Engineering, 2017, 95(6):1202-1212.
    [8]邹晓燕,姚克俭.被动式DMFC阳极通道气泡行为的实验研究[J].化工进展, 2011, 30(7):1444-1449.ZOU Xiaoyan, YAO Kejian. Experimental investigation onbubbling behavior in anode channel of passive DMFC[J].Chemical Industry and Engineering Progress, 2011, 30(7):1444-1449.
    [9] FENG J J, LI X C, BAO Y Y, et al. Coalescence and conjunctionof two in-line bubbles at low Reynolds numbers[J]. ChemicalEngineering Science, 2016, 141:261-270.
    [10] NGUYEN V T, SONG C-H, BAE B-U, et al. Modeling of bubblecoalescence and break-up considering turbulent suppressionphenomena in bubbly two-phase flow[J]. International Journal ofMultiphase Flow, 2013, 54:31-42.
    [11] UEYAMA K, MOROOKA S, KOIDE K, et al. Behavior of gasbubbles in bubble columns[J]. Ind. Eng. Chem. Process Des. Dev.,1980, 19:592-599.
    [12] SANADA T, SATO A, SHIROTA M, et al. Motion and coalescenceof a pair of bubbles rising side by side[J]. Chemical EngineeringScience, 2009, 64(11):2659-2671.
    [13] LEGENDRE D, ZEVENHOVEN R. Detailed experimental studyon the dissolution of CO2and air bubbles rising in water[J].Chemical Engineering Science, 2017, 158:552-560.
    [14] AOKI J, HAYASHI K, TOMIYAMA A. Mass transfer from singlecarbon dioxide bubbles in contaminated water in a vertical pipe[J].International Journal of Heat and Mass Transfer, 2015, 83:652-658.
    [15] BOHM L, BREHMER M, KRAUME M. Comparison of the singlebubble ascent in a newtonian and a non-newtonian liquid:aphenomenological PIV study[J]. Chemie Ingenieur Technik, 2016,88(1/2):93-106.
    [16] POURTOUSI M, GANESAN P, KAZEMZADEH A, et al. Methanebubble formation and dynamics in a rectangular bubble column:aCFD study[J]. Chemometrics and Intelligent Laboratory Systems,2015, 147:111-120.
    [17]许联锋,陈刚,李建中,等.粒子图像测速技术研究进展[J].力学进展, 2003, 33(4):533-540.XU Lianfeng, CHEN Gang, LI Jianzhong, et al. Progress in theresearch of particle image velocimetry[J]. Advances in Mechanics,2003, 33(4):533-540.
    [18] FUNFSCHILLING D, LI H Z. Flow of non-Newtonian fluidsaround bubbles:PIV measurements and birefringence visualisation[J]. Chemical Engineering Science, 2001, 56:1137-1141.
    [19] SAITO T, TORIU M. Effects of a bubble and the surroundingliquid motions on the instantaneous mass transfer across the gas-liquid interface[J]. Chemical Engineering Journal, 2015, 265:164-175.
    [20] HUANG J, SAITO T. Influences of gas-liquid interfacecontamination on bubble motions, bubble wakes, andinstantaneous mass transfer[J]. Chemical Engineering Science,2017, 157:182-199.
    [21] HANYU K, SAITO T. Dynamical mass-transfer process of a CO2bubble measured by using LIF/HPTS visualisation andphotoelectric probing[J]. The Canadian Journal of ChemicalEngineering, 2010, 88:551-560.
    [22] NOCK W J, HEAVEN S, BANKS C J. Mass transfer and gas-liquid interface properties of single CO2bubbles rising in tap water[J]. Chemical Engineering Science, 2016, 140:171-178.
    [23] JIN H B, YANG S H, ZHANG T W, et al. Bubble behavior of alarge scale bubble column with elevated pressure[J]. ChemicalEngineering&Technology, 2004, 27:1007-1013.
    [24] BAKER G R, MOORE D W. The rise and distortion of a two-dimensional gas bubble in an inviscid liquid[J]. Physics of FluidsA:Fluid Dynamics, 1989, 1(9):1451-1459.
    [25] ZHANG Y L, YEO K S, KHOO B C, et al. 3D jet impact andtoroidal bubbles[J]. Journal of Computational Physics, 2001, 166(2):336-360.
    [26] SUSSMAN M, SMEREKA P. Axisymmetric free boundaryproblems[J]. Journal of Fluid Mechanics, 1997, 341:269-294.
    [27] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed:algorithms based on hamilton-jacobiformulations[J]. Journal of Computational Physics, 1988, 79:12-49.
    [28] SUSSMAN M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles[J]. Journal of Computational Physics, 2003, 187(1):110-136.
    [29] WANG C Y, CHENG P. A multiphase mixture model formultiphase, multicomponent transport in capillary porous media I.Model development[J]. International Journal of Heat&MassTransfer, 1996, 39(17):3607-3618.
    [30]王乐,曹洲榕,郑西朋,等.三气泡上升聚并的数值模拟研究[C]//全国水环境污染控制与生态修复技术高级研讨会, 2016.WANG Le, CAO Zhourong, ZHENG Xipeng, et al. Research onnumerical simulation of motion behaviors of three bubbles risingin water[C]//Advanced Seminar on Water Environment PollutionControl and Ecological Restoration Technology, 2016.
    [31] ZHANG Y J, LIU M Y, XU Y G, et al. Three-dimensional volumeof fluid simulations on bubble formation and dynamics in bubblecolumns[J]. Chemical Engineering Science, 2012, 73:55-78.
    [32] AKHTAR A, PAREEK V, TAD M. CFD simulations forcontinuous flow of bubbles through gas-liquid columns:application of VOF method[J]. Chemical Product and ProcessModeling, 2007, 2(1):1-19.
    [33]程军明,吴伟烽,聂娟,等.气泡在静水中上升破裂产生射流特性的数值模拟[J].江苏大学学报, 2014, 35(5):513-517.CHENG Junming, WU Weifeng, NIE Juan, et al. Numericalsimulation of bubbles rising and bursting under buoyancy effect instatic water[J]. Journal of Jiangsu University, 2014, 35(5):513-517.
    [34] GUAN X P, LI Z Q, WANG L J, et al. CFD simulation of bubbledynamics in bubble columns with internals[J]. Industrial&Engineering Chemistry Research, 2014, 53(42):16529-16538.
    [35]蔡杰进,曾庆允,渡边正.基于OpenFOAM的气泡上升特性数值模拟[J].热力发电, 2013, 42(9):24-31.CAI Jiejin, ZENG Qingyun, WATANABE Tadashi. OpenFOAMbased numerical simulation on rising characteristics of bubbles[J].Thermal Power Generation, 2013, 42(9):24-31.
    [36]赵婷婷,刘赵淼,申峰.水中单个气泡上升过程中的变形与破碎的数值模拟[C]//北京力学会第19届学术年会, 2013.ZHAO Tingting, LIU Zhaomiao, SHEN Feng. Numericalsimulation of deformation and breakage of single bubbles in water[C]//The 19th Annual Academic Conference of the BeijingInstitute of Technology, 2013.
    [37]徐玲君,陈刚,邵建斌,等.单个气泡静水中上升特性的数值模拟[J].沈阳农业大学学报, 2012, 43(3):357-361.XU Lingjun, CHEN Gang, SHAO Jianbin, et al. Numericalsimulation of motion behavior of single bubble rising in still water[J]. Journal of Shenyang Agricultural University, 2012, 43(3):357-361.
    [38] GOEL D, BUWA V V. Numerical simulations of bubble formationand rise in microchannels[J]. Industrial&Engineering ChemistryResearch, 2009, 48:8109-8120.
    [39] POURTOUSI M, GANESAN P, SAHU J N. Effect of bubblediameter size on prediction of flow pattern in Euler-Eulersimulation of homogeneous bubble column regime[J].Measurement, 2015, 76:255-270.
    [40] RAMPURE M R, KULKARNI A A, RANADE V V.Hydrodynamics of bubble column reactors at high gas velocity:experiments and computational fluid dynamics(CFD)simulations[J]. Industrial&Engineering Chemistry Research, 2007, 46:8431-8447.
    [41] CHEN P, SANYAL J, DUDUKOVI?M P. Numerical simulation ofbubble columns flows:effect of different breakup and coalescenceclosures[J]. Chemical Engineering Science, 2005, 60(4):1085-1101.
    [42] SANYAL J, VASQUEZ S, ROY S, et al. Numerical simulation ofgas-liquid dynamics in cylindrical bubble column reactors[J].Chemical Engineering Science, 1999, 54:5071-5083.
    [43]鞠花,陈刚,李国栋.静水中气泡上升运动特性的数值模拟研究[J].西安理工大学学报, 2011, 27(3):344-349.JU Hua, CHEN Gang, LI Guodong. Research on numericalsimulation of motion behaviors of single bubble rising in still water[J]. Journal of Xi’an University of Technology, 2011, 27(3):344-349.
    [44] PREMLATA A R, TRIPATHI M K, KARRI B, et al. Dynamics ofan air bubble rising in a non-Newtonian liquid in theaxisymmetric regime[J]. Journal of Non-Newtonian FluidMechanics, 2017, 239:53-61.
    [45] LIU J R, ZHU C Y, FU T T, et al. Systematic study on thecoalescence and breakup behaviors of multiple parallel bubblesrising in power-law fluid[J]. Industrial&Engineering ChemistryResearch, 2014, 53(12):4850-4860.
    [46] LIU J R, ZHU C Y, FU T T, et al. Numerical simulation of theinteractions between three equal-interval parallel bubbles risingin non-Newtonian fluids[J]. Chemical Engineering Science, 2013,93:55-66.
    [47] BALTUSSEN M W, SEGERS Q I E, KUIPERS J A M, et al.Cutting bubbles with a single wire[J]. Chemical EngineeringScience, 2017, 157:138-146.
    [48] RABHA S S, BUWA V V. Volume-of-fluid(VOF)simulations ofrise of single/multiple bubbles in sheared liquids[J]. ChemicalEngineering Science, 2010, 65(1):527-537.
    [49] WANG X L, DONG H F, ZHANG X P, et al. Numericalsimulation of single bubble motion in ionic liquids[J]. ChemicalEngineering Science, 2010, 65(22):6036-6047.
    [50] TAHA T, CUI Z F. Hydrodynamics of slug flow inside capillaries[J]. Chemical Engineering Science, 2004, 59(6):1181-1190.
    [51] LIN T J, TSUCHIYA K, FAN L S. Bubble flow characteristics inbubble columns at elevated pressure and temperature[J]. AIChEJournal, 1998, 44(3):545-560.
    [52] LI Y, ZHANG J P, FAN L S. Discrete-phase simulation of singlebubble rise behavior at elevated pressures in a bubble column[J].Chemical Engineering Science, 2000, 55:4597-4609.
    [53] KHURANA A K, KUMAR R. Studies in bubble formation-III[J].Chemical Engineering Science, 1969, 24:1711.
    [54] HUGHES R R, HANDLOS A E, EVANS H D, et al. The formationof bubbles at simple orifices[J]. Chemical Engineering Progress,1955, 51(12):557.
    [55] DATTA R L, NAPIER D H, NEWITT D M. The properties andbehaviour of gas bubbles formed at a circular orifice[J].Transactions of the Institution of Chemical Engineers, 1950,28:14.
    [56] IDOGAWA K, IKEDA K, FUKUDA T, et al. Formation and flowof gas bubbles in a pressurized bubble column with a single orificeor nozzle gas distributor[J]. Chemical EngineeringCommunications, 2010, 59(1/2/3/4/5/6):201-212.
    [57] WILKINSON P M. Physical aspects and scale-up of high pressurebubble columns[D]. Netherland:University of Groningen, 1991.
    [58] TSUGE H, HIBINO S I. Bubble formation from an orificesubmerged in liquids[J]. Chemical Engineering Communications,1983, 22(1/2):63-79.
    [59] CANO-LOZANO J C, BOLA OS-JIM NEZ R, GUTI RREZ-MONTES C, et al. On the bubble formation under mixed injectionconditions from a vertical needle[J]. International Journal ofMultiphase Flow, 2017, 97:23-32.
    [60] ZAWALA J, MALYSA K. Influence of the impact velocity andsize of the film formed on bubble coalescence time at water surface[J]. Langmuir, 2011, 27(6):2250-2257.
    [61] CAI Z Q, GAO Z M, BAO Y Y, et al. Formation and motion ofconjunct bubbles in glycerol-water solutions[J]. Industrial&Engineering Chemistry Research, 2011, 51(4):1990-1996.
    [62] WU M, GHARIB M. Experimental studies on the shape and pathof small air bubbles rising in clean water[J]. Physics of Fluids,2002, 14(7):49-52.
    [63] YOSHIDA S, MANASSEH R. Trajectories of rising bubbles[C]//The 16th Japanese Multiphase Flow Symposium, 1997
    [64] CLIFT R, GRACE J R, WEBER M E. Bubbles, drops, andparticles[M]. New York:Academic Press, 1978.
    [65] KATZ J, MENEVEAU C. Wake-induced relative motion ofbubbles rising in line[J]. International Journal of Multiphase Flow,1996, 22:239-258.
    [66] KAMP A M, CHESTER A K, COLIN C, et al. Bubble coalescencein turbulent flows:a mechanistic model for turbulence-inducedcoalescence applied to microgravity bubbly pipe flow[J].International Journal of Multiphase Flow, 2001, 27:1363-1396.
    [67] SANADA T, WATANABE M, FUKANO T. Effects of viscosity oncoalescence of a bubble upon impact with a free surface[J].Chemical Engineering Science, 2005, 60(19):5372-5384.
    [68] LIAO Y, LUCAS D. A literature review of theoretical models fordrop and bubble breakup in turbulent dispersions[J]. ChemicalEngineering Science, 2009, 64(15):3389-3406.
    [69]冯俊杰.气液两相体系气泡的流体力学行为研究[D].北京:北京化工大学, 2016.FENG Junjie. Study of hydrodynamics behaviors of bubbles ingas-liquid systems[D]. Beijing:Beijing University of ChemicalTechnology, 2016.
    [70] TSE K L, MARTIN T, MCFARLANE C M, et al. Small bubbleformation via a coalescence dependent break-up mechanism[J].Chemical Engineering Science, 2003, 58:275-286.
    [71] KISTER H Z. Distillation design[M]. New York:McGraw-Hill,1992.
    [72] GUAN X P, YANG N. Bubble properties measurement in bubblecolumns:from homogeneous to heterogeneous regime[J]. ChemicalEngineering Research and Design, 2017, 127:103-112.
    [73] WILKINSON P M, HARINGA H, VAN DIERENDONCK L L.Mass transfer and bubble size in a bubble column under pressure[J]. Chemical Engineering Science, 1994, 49(9):1417-1427.
    [74] KOJIMA H, SAWAI J, SUZUKI H. Effect of pressure onvolumetric mass transfer coefficient and gas holdup in bubblecolumn[J]. Chemical Engineering Science, 1997, 52:4111-4116.
    [75] BAIRD M H I, RAMA RAO N V. Characteristics of acountercurrent reciprocating plate bubble column. II. Axial mixingand mass transfer[J]. The Canadian Journal of ChemicalEngineering, 1988, 66:222-231.
    [76] ZAREI T, ABEDINI E, RAHIMI R, et al. Computational fluiddynamics on the hydrodynamic characteristics of the conical captray[J]. Korean Journal of Chemical Engineering, 2017, 34(4):969-976.
    [77] ZAREI A, HOSSEINI S H, RAHIMI R. CFD and experimentalstudies of liquid weeping in the circular sieve tray columns[J].Chemical Engineering Research and Design, 2013, 91(12):2333-2345.
    [78] WANG W W, LI S Y, LI J L. Experimental determination ofbubble size distributions in laboratory scale sieve tray with mesh[J]. Industrial&Engineering Chemistry Research, 2012, 51(20):7067-7072.
    [79] WHITMAN W G. The two film theory of gas absorption[J].International Journal of Heat&Mass Transfer, 1924, 5(5):429-433.
    [80] HIGBIE R. The rate of absorption of a pure gas into a still liquidduring short periods of exposure[J]. Transactions of AIChEJournal, 1935, 31(1):365-388.
    [81] DANCKWERTS P V. B1–Significance of liquid-film coefficientsin gas absorption[J]. Industrial&Engineering Chemistry, 1951, 43(6):1460-1467.
    [82]余国琮,袁希钢.化工计算传质学导论[M].天津:天津大学出版社, 2011.YU Guocong, YUAN Xigang. Introduction of chemical engineeringcomputational mass transfer[M]. Tianjin:Tianjin University Press,2011.
    [83] OZTURK S S, SCHUMPE A, DECKWER W D. Organic liquids ina bubble column:holdups and mass transfer coefficients[J].AIChE Journal, 1987, 33(9):1473-1480.
    [84] KAWASE Y, HALARD B, MOO-YOUNG M. Theoreticalprediction of volumetric mass transfer coefficients in bubblecolumns for Newtonian and non-Newtonian fluids[J]. ChemicalEngineering Science, 1987, 42(7):1609-1617.
    [85] ZHAO B, WANG J F, YANG W G, et al. Gas-liquid mass transferin slurry bubble systems[J]. Chemical Engineering Journal, 2003,96(1/2/3):23-27.
    [86] AOKI J, HORI Y, HAYASHI K, et al. Mass transfer from singlecarbon dioxide bubbles in alcohol aqueous solutions in vertical pipes[J]. International Journal of Heat and Mass Transfer, 2017,108:1991-2001.
    [87]马友光,汪晓红,余国琮,等.单个运动气泡近界面浓度场的研究[J].化工学报, 1998, 49(6):715-720.MA Youguang, WANG Xiaohong, YU Guocong, et al. Study of thenear-interface concentration field of individual motive bubbles[J].Journal of Chemical Industry and Engineering, 1998, 49(6):715-720.
    [88] ZARITZKY N E, CALVELO A. Internal mass transfer coefficientwithin single bubbles. Theory and experiment[J]. The CanadianJournal of Chemical Engineering, 1979, 57:58-64.
    [89] GARNER F H, HAMMERTON D. Circulation inside gas bubbles[J]. Chemical Engineering Science, 1954, 3:1-11.
    [90] FILLA M, DAVIDSON J F, BATES J F, et al. Gas phasecontrolled mass transfer from a bubble[J]. Chemical EngineeringScience, 1976, 31:359-367.
    [91] SABONI A, ALEXANDROVA S, KARSHEVA M, et al. Masstransfer into a spherical bubble[J]. Chemical Engineering Science,2016, 152:109-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700