基于OH-PLIF技术的合成气燃烧速度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the laminar burning velocity of syngas based on OH-PLIF technology
  • 作者:蒲舸 ; 张勋 ; 王文鼎
  • 英文作者:PU Ge;ZHANG Xun;WANG Wending;Key Laboratory of Low-grade Energy Utilization Technologies and Systems,Chongqing University;
  • 关键词:合成气燃烧速度 ; PLIF技术 ; CHEMKIN模拟 ; 动力学机理
  • 英文关键词:burning velocity of syngas;;PLIF technology;;CHEMKIN simulation;;chemical kinetics
  • 中文刊名:FIVE
  • 英文刊名:Journal of Chongqing University
  • 机构:重庆大学低品位能源利用技术及系统教育部重点实验室;
  • 出版日期:2017-05-15
  • 出版单位:重庆大学学报
  • 年:2017
  • 期:v.40
  • 基金:重庆市重点产业共性关键技术创新专项(CSTC2016zdcy-ztzx20001)~~
  • 语种:中文;
  • 页:FIVE201705004
  • 页数:7
  • CN:05
  • ISSN:50-1044/N
  • 分类号:33-39
摘要
为了解合成气燃烧特性,采用高精度光学测量技术PLIF,研究了不同生物质气化合成气在不同当量比下的燃烧火焰结构、OH基浓度以及火焰传播速度。采用CHEMKIN软件模拟计算了相同工况下合成气火焰传播速度,对引起温度变化和OH基浓度变化的原因进行了化学动力学分析。研究结果表明,合成气中CO含量的增加会使火焰整体结构变小,但对内焰影响程度不大,而H2含量的增加会增大火焰的传播速度。合成气燃烧过程中主要影响OH基生成的是R36:CO+OH=CO_2+H、R43:H+O2+M=HO_2+M和R45:H+HO_2=2OH这3个基元反应。
        In order to understand the combustion characteristics of the syngas,an experiment was conducted to research the structure,distribution of OH radicals and burning velocity of the syngas-air with OH-PLIF technology.Simulations were also conducted to analyze the chemical kinetics of the combustion process.The results show that the increasing fraction of CO will shrink the structure of the flame,while the height of inner flame varies a little.However,the increasing of H_2 will increase the burning velocity dramatically.The dominant reactions on the formation of OH radical are R36:CO+OH=CO_2+H,R43:H+O_2+M=HO_2+M and R45:H+HO_2=2OH.
引文
[1]王辅臣,于广锁,龚欣,等.大型煤气化技术的研究与发展[J].化工进展,2009,28(2):173-180.WANG Fuchen,YU Guangsuo,GONG Xin,et al.Research and development of large-scale coal gasification technology[J].Chemical Industry and Engineering Progress,2009,28(2):173-180.(in Chinese)
    [2]高聚忠.煤气化技术的应用与发展[J].洁净煤技术,2013,19(1):65-71.GAO Juzhong.Application and development of coal gasification technologies[J].Clean Coal Technology,2013,19(1):65-71.(in Chinese)
    [3]赵连臣,李晓伟,王责路,等.生物质气化的应用与研究[J].可再生能源,2008,26(6):55-58.ZHAO Lianchen,LI Xiaowei,WANG Zelu,et al.The research and utilization on biomass gasification[J].Renewable Energy Resources,2008,26(6):55-58.(in Chinese)
    [4]郭培卿,臧述升,葛冰.合成气燃烧数值模拟与验证[J].计算机与应用化学,2014,31(1):1-4.GUO Peiqing,ZANG Shusheng,GE Bing.Numerical simulation and validation of syngas combustion[J].Computers and Applied Chemistry,2014,31(1):1-4.(in Chinese)
    [5]Fu J,Tang C,Jin W,et al.Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph[J].International Journal of Hydrogen Energy,2013,38(3):1636-1643.
    [6]陈冠益,高文学,颜蓓蓓,等.生物质气化技术研究现状与发展[J].煤气与热力,2006,26(7):20-26.CHEN Guanyi,GAO Wenxue,YAN Beibei,et al.Present research status and development of biomass gasification technologies[J].Gas and Heat,2006,26(7):20-26.(in Chinese)
    [7]张亚宁,李炳熙,张波,等.生物质氧气气化和水蒸汽气化的能量分析及火用分析[J].华北电力大学学报(自然科学版),2012,39(1):64-69.ZHANG Yaning,LI Bingxi,ZHANG Bo,et al.Energy and exergy analysis of biomass gasification with oxygen or steam[J].Journal of North China Electric Power University(Natural Science Edition),2012,39(1):64-69.(in Chinese)
    [8]Gao N,Li A,Quan C,et al.Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer[J].International journal of hydrogen energy,2008,33(20):5430-5438.
    [9]应浩,涂军令,江俊飞,等.木屑高温水蒸气气化制备合成气研究[J].太阳能学报,2014,35(3):379-383.YING Hao,TU Junling,JIANG Junfei,et al.Production of synthesis gas by high temperature steam gasification of sawdust[J].Acta Energiae sloris Sinica,2014,35(3):379-383.(in Chinese)
    [10]Tinaut F V,Melgar A,Perez J F,et al.Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier.An experimental and modelling study[J].Fuel Processing Technology,2008,89(11):1076-1089.
    [11]付鹏,向军,张安超,等.生物质空气—水蒸气催化气化制氢技术[J].化工时刊,2006,20(11):55-58.FU Peng,XIANG Jun,ZHANG Anchao,et al.Catalytic gasification of biomass with air-steam to produce hydrogen[J].Chemical Industry Times,2006,20(11):55-58.(in Chinese)
    [12]Zhou J,Chen Q,Zhao H,et al.Biomass-oxygen gasification in a high-temperature entrained-flow gasifier[J].Biotechnology advances,2009,27(5):606-611.
    [13]Bouvet N,Chauveau C,G9kalp I,et al.Characterization of syngas laminar flames using the Bunsen burner configuration[J].International Journal of Hydrogen Energy,2011,36(1):992-1005.
    [14]Natarajan J,Lieuwen T,Seitzman J.Laminar flame speeds of H2/CO mixtures:Effect of CO2 dilution,preheat temperature,and pressure[J].Combustion and Flame,2007,151(1/2):104-119.
    [15]Ouimette P,Seers P.Numerical comparison of premixed laminar flame velocity of methane and wood syngas[J].Fuel,2009,88(3):528-533.
    [16]Ai Y,Zhou Z,Chen Z,et al.Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures[J].Fuel,2014,137(6):339-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700