基于水热耦合平衡的长江源实际蒸散变化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variations of actual evapotranspiration in the Yangtze River headwater region based on coupled water-energy balance
  • 作者:强皓凡 ; 靳晓言 ; 刘超 ; 庄文化 ; 吴晶 ; 刘铁刚
  • 英文作者:QIANG Haofan;JIN Xiaoyan;LIU Chao;ZHUANG Wenhua;WU Jing;LIU Tiegang;State Key Laboratory of Hydraulics and Mountain River Engineering,College of Water Resource and Hydropower,Sichuan University;Yunnan Academy of Agricultural Sciences;Lanzhou Meteorological Center;
  • 关键词:长江源 ; 水热耦合平衡方程 ; 实际蒸散 ; 云模型 ; 敏感分析
  • 英文关键词:the Yangtze River headwater region;;coupled water-energy balance equation;;actual evapotranspiration;;cloud model;;sensitivity analysis
  • 中文刊名:GHZH
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:四川大学水力学与山区河流保护国家重点实验室水利水电学院;云南省农业科学院;兰州中心气象台;
  • 出版日期:2018-03-05
  • 出版单位:干旱区资源与环境
  • 年:2018
  • 期:v.32;No.235
  • 基金:国家自然科学基金项目(41301021,51209153)资助
  • 语种:中文;
  • 页:GHZH201803020
  • 页数:6
  • CN:03
  • ISSN:15-1112/N
  • 分类号:109-114
摘要
采用1960~2012年长江源地区8个气象站的气象数据和直门达站的径流数据,基于流域水热耦合平衡方程计算了长江源区实际蒸散(ET),采用云模型、Mann-Kendall检验、Pettitt检验和Sen趋势度等方法分析了ET的时空变化特征,并通过敏感性分析确定了影响ET的主要气候因子。结果表明:1)1960~2012年长江源区多年平均ET为277.6mm/a,呈显著上升趋势(99%置信度),上升速率为6.27mm/10a,并在1997年发生突变(99%置信度)。2)年均ET从西北向东南递增,且上升速率从西北向东南递减。熵值En和超熵He分别呈西高东低和西北高东南低的分布规律。ET均值大的区域年ET随时间变化较为均匀且稳定性较强。3)源区年ET变化对降水最为敏感,其后依次是相对湿度、日照时数、最高气温、风速、最低气温和平均气温。降水量上升对ET的增加起主要贡献作用,其次是气温与日照时数的上升和相对湿度的下降。
        Based on the daily meteorological data from 8 stations and runoff data from Zhimenda during 1960 ~2012 in the Yangtze River headwater region,annual ET were calculated and tested by coupled water-energy balance equation. The spatio-temporal variation characteristics of ET were analyzed by cloud model,Mann-Kendall test,Pettitt test and Sen slope,and the key climate variables were determined by sensitivity analysis.The results showed that:( 1) The annual ET increased significantly( 99% confidence level),with an average of277. 6 mm/a and an increasing rate of 6. 27 mm/10 a. The change-point occurred in 1997( 99% confidence level).( 2) The distribution of average annual ET increased from northwest to southeast with an increasing rate decreasing from northwest to southeast. The distributions of entropy En and super entropy He were " high in west and low in east" and " high in northwest and low in southeast" respectively. ET changed with greater uniformity and stronger stability over time in the area of large mean ET.( 3) ET was the most sensitive to precipitation,followed by relative humidity,sunshine duration,maximum air temperature,wind speed,minimum air temperature and mean air temperature. The dominant reason for ET increase was precipitation increase,followed by air temperature increase,sunshine duration increase and relative humidity decrease.
引文
[1]刘绍民,孙睿,孙中平,等.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报,2004,59(3):331-340.
    [2]张瑞钢,莫兴国,林忠辉.滹沱河上游山区近50年蒸散变化及主要影响因子分析[J].地理科学,2012,32(5):628-634.
    [3]朱非林,王卫光,孙一萌,等.汉江流域实际蒸散发的时空演变规律及成因分析[J].河海大学学报(自然科学版),2003,41(4):300-306.
    [4]Bouchet R.Evapotranspiration reele et potentielle,signification climatique[J].International Association of Hydrological Sciences,1963,62:134-142.
    [5]Budyko M I.Climate and Life[M].San Diego,Calif:Academic,1974.
    [6]傅抱璞.论陆面蒸发的计算[J].大气科学,1981,5(1):23-31.
    [7]Yang D W,Sun F B,Liu Z T,et al.Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses[J].Geophysical Research Letters,2006,33(18):122-140.
    [8]韩松俊,胡和平,田富强.基于水热耦合平衡的塔里木盆地绿洲的年蒸散发[J].清华大学学报:自然科学版,2008,48(12):2070-2073.
    [9]李鸿雁,薛丽君,王世界,等.基于水热耦合平衡理论的嫩江流域蒸散发估算[J].华北水利水电大学学报(自然科学版),2016,37(4):47-53.
    [10]陈进.长江源区水循环机理探讨[J].长江科学院院报,2013,30(4):1-5.
    [11]李林,李凤霞,郭安红,等.近43年来"三江源"地区气候变化趋势及其突变研究[J].自然资源学报,2006,21(1):79-85.
    [12]姜永见,李世杰,沈德福,等.青藏高原江河源区近40年来气候变化特征及其对区域环境的影响[J].山地学报,2012,30(4):461-469.
    [13]Allen R G,Pereira L S,Raes D,et al.Crop Evapotranspiration Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56[M].Rome:Food and Agriculture Organization of the United Nations,1998.
    [14]左大康,王懿贤,陈建绥.中国地区太阳总辐射的空间分布特征[J].气象学报,1963,33(1):78-96.
    [15]刘德地,陈晓宏,楼章华.基于云模型的降雨时空分布特性分析[J].水利学报,2009,40(7):851-856.
    [16]尹云鹤,吴绍洪,戴尔阜.1971~2008年我国潜在蒸散时空演变的归因[J].科学通报,2010,55(22):2226-2234.
    [17]刘波,肖子牛,马柱国.中国不同干湿区蒸发皿蒸发和实际蒸发之间关系的研究[J].高原气象,2010,29(3):629-636.
    [18]尹云鹤,吴绍洪,赵东升,等.1981-2010年气候变化对青藏高原实际蒸散的影响[J].地理学报,2012,67(11):1471-1481.
    [19]杨秀芹,王国杰,潘欣,等.基于GLEAM遥感模型的中国1980-2011年地表蒸散发时空变化[J].农业工程学报,2015,31(21):132-141.
    [20]Gao G,Chen D L,Xu C Y,et al.Trend of estimated actual evapotranpiration over China during 1960-2002[J].Journal of Geophysical Research,2007,112(D11120):1-8.
    [21]张国胜,时兴合,李栋梁,等.长江源沱沱河区45a来的气候变化特征[J].冰川冻土,2006,28(5):678-685.
    [22]李辉霞,刘国华,傅伯杰.基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J].生态学报,2011,31(19):5495-5504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700