IPMC驱动柔性机器鱼速度控制系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Speed Control System of Soft Robotic Fish Actuated by IPMC
  • 作者:常龙飞 ; 李超群 ; 牛清正 ; 杨倩 ; 胡小品 ; 何青松 ; 吴玉程
  • 英文作者:CHANG Long-fei;LI Chao-qun;NIU Qing-zheng;YANG Qian;HU Xiao-pin;HE Qing-song;WU Yu-cheng;Institute of Industry and Equipment Technology, Hefei University of Technology;Key Laboratory of Bionic Functional Materials in Jiangsu Province, Nanjing University of Aeronautics and Astronautics;School of Materials Science and Engineering, Hefei University of Technology;Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology;
  • 关键词:柔性机器鱼 ; 离子聚合物金属复合材料 ; 闭环控制 ; 速度反馈
  • 英文关键词:soft robotic fish;;ionic polymer-metal composite(IPMC);;closed-loop control;;feedback of speed
  • 中文刊名:YLJS
  • 英文刊名:Journal of Unmanned Undersea Systems
  • 机构:合肥工业大学工业与装备技术研究院;南京航空航天大学江苏省仿生功能材料重点实验室;合肥工业大学材料学院;合肥工业大学先迚功能材料与器件安徽省重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:水下无人系统学报
  • 年:2019
  • 期:v.27;No.131
  • 基金:国家自然科学基金(51605131);; 安徽省自然科学基金青年项目(1608085QE100)
  • 语种:中文;
  • 页:YLJS201902008
  • 页数:9
  • CN:02
  • ISSN:61-1509/TJ
  • 分类号:47-55
摘要
离子聚合物金属复合材料(IPMC)作为一种典型的柔性智能材料,具有质量轻、变形大,可在水下运行等独特优点,在制作柔性机器鱼领域展现了突出优势。实现IPMC驱动机器鱼的独立运行和速度可控对于推动其实际应用具有重要意义。由于IPMC性能限制,使得机器鱼负载能力有限,对传感器和控制单元的质量和体积均有较高要求;同时由于游动速度信号的采集和处理较为困难等原因,现有IPMC驱动机器鱼大多是以开环方式来控制,少数关于游动速度的反馈控制也是以理论研究为主或者借助外接仪器和传感器来测量参数,均未能实现独立运动下IPMC驱动机器鱼的速度反馈控制。因此,文中在制造无外接电源、独立运动机器鱼的前提下实现对游动速度的闭环控制,通过在机器鱼内部安装惯性测量单元来测量游动速度,并对其设计了比例-积分-微分(PID)控制器反馈速度控制系统,利用MATLAB对控制系统进行仿真,使用单片机、陀螺仪等制作印制电路板(PCB),利用性能优良的IPMC材料制备具有可观负载能力的机器鱼样机,并进行了预设速度分别为3mm/s和6mm/s时的实验。实验结果表明,机器鱼的独立运行和速度得到了精确控制,最终使得机器鱼约在1.8 s时达到预设速度且稳态误差保持在?0.4 mm/s以内,速度控制误差不超过8%。文中所做研究可为机器鱼游动闭环控制研究提供参考。
        Independent operation and closed-loop speed control are very important for practical application of ionic polymer-metal composite(IPMC)-actuated robotic fish. However, due to the low force output of IPMC, the load capacity of the robotic fish is limited, which poses demanding requirements for weight and volume of the sensors and control units. In addition, the speed signal acquisition and processing are relatively difficult, therefore the existing IPMC-actuated robotic fish usually adopts open-loop control, while the speed feedback control of the IPMC-based independent robotic fish has not yet been realized. This study fabricated an independent IPMC robotic fish without external power supply,and implemented its closed-loop speed control. An inertial measurement unit(IMU) device was used to measure the speed, and a proportional-integral-differential(PID) controller feedback speed control system was designed. The control system was simulated by MATLAB, and the printed circuit board(PCB) was fabricated by using such electronic devices as single-chip microcomputer and gyroscope. Some IPMC materials with good performance were used to make the prototype of the robotic fish with considerable load capacity. Experiment was carried out with preset speed of 3 mm/s and 6 mm/s, respectively, the results showed that the robotic fish could perform independently with precise speed control, and it reached the preset speed within 1.8 s. The steady-state error remained within ?0.4 mm/s, and the speed control error did not exceed 8%. This research may offer a reference for the study of closed-loop control of robotic fish swimming.
引文
[1]Rus D,Tolley M T.Design,Fabrication and Control of Soft Robots[J].Nature,2015,521(7553):467-475.
    [2]Kim S,Laschi C,Trimmer B.Soft Robotics:a Bioinspired Evolution in Robotics[J].Trends in Biotechnology,2013,31(5):287.
    [3]Deepak T,Christopher D R,William M K,et al.Soft Robotics:Biological Inspiration,State of the Art,and Future Research[J].Applied Bionics&Biomechanics,2014,5(3):99-117.
    [4]Chu W S,Lee K T,Song S H,et al.Review of Biomimetic Underwater Robots Using Smart Actuators[J].International Journal of Precision Engineering&Manufacturing,2012,13(7):1281-1292.
    [5]李铁风,李国瑞,梁艺鸣,等.软体机器人结构机理与驱动材料研究综述[J].力学学报,2016,48(4):756-766.Li Tie-feng,Li Guo-rui,Liang Yi-ming,et al.Research Review of Structural Mechanism and Driving Materials of Software Robots[J].Journal of Mechanics,2016,48(4):756-766.
    [6]Asaka K,Oguro K,Nishimura Y,et al.Bending of Polyelectrolyte Membraneplatinum Composites by Electric Stimuli I.Response Characteristics to Various Waveforms[J].Polymer Journal,1995,27:436-440.
    [7]Baughman R H.Conducting Polymer Artificial Muscles[J].Synthetic Metals,1996,78:339-353.
    [8]Fukushima T,Asaka K,Kosaka A,et al.Fully Plastic Actuator through Layer-By-Layer Casting With Ionic-Liquid-Based Bucky Gel[J].Angewandte Chemie-International Edition,2005,44(16):2410-2413.
    [9]Tanaka T,Nishio I,Sun S T,et al.Collapse of Gels in an Electric Field[J].Science,1982,218(4571):467-469.
    [10]Kalia S,Avérous L.Biopolymers:Biomedical and Environmental Applications[M].USA:Wiley,2011.
    [11]Shahinpoor M.Potential Applications of Electroactive Polymer Sensors and Actuators in MEMS Technologies[J].Proceedings of SPIE-the International Society for Optical Engineering,2001,4234:203-214.
    [12]Jung K,Nam J,Choi H.Investigations on Actuation Characteristics of IPMC Artificial Muscle Actuator[J].Sensors&Actuators A Physical,2003,107(2):183-192.
    [13]Chen Z,Shatara S,Tan X.Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer-Metal Composite Caudal Fin[J].IEEE/ASME Transactions on Mechatronics,2009,15(3):448-459.
    [14]Mbemmo E,Chen Z,Shatara S,et al.Modeling of Biomimetic Robotic Fish Propelled by an Ionic Polymer-metal Composite Actuator[C]//IEEE International Conference on Robotics and Automation.Pasadena,CA,USA:IEEE,2008:689-694.
    [15]Chen Z.A Review on Robotic Fish Enabled by Ionic Polymer-metal Composite Artificial Muscles[J].Robotics&Biomimetics,2017,4(1):24.
    [16]Mojarrad M,Shahinpoor M.Biomimetic Robotic Propulsion Using Polymeric Artificial Muscles[C]//IEEE International Conference on Robotics and Automation.Albuquerque,NM,USA:IEEE,1997:2152-2157.
    [17]Byungkyu K,Deok-Ho K,Jaehoon J,et al.A Biomimetic Undulatory Tadpole Robot Using Ionic Polymer Metal Composite Actuators[J].Smart Materials&Structures,2005,14(6):1-7.
    [18]Guo S,Ge Y,Li L,et al.Underwater Swimming Micro Robot Using IPMC Actuator[C]//IEEE International Conference on Mechatronics and Automation.Luoyang,Henan,China:IEEE,2006:249-254.
    [19]Ye X,Su Y,Guo S.A Centimeter-scale Autonomous Robotic Fish Actuated by IPMC Actuator[C]//IEEE International Conference on Robotics and Biomimetics.Sanya,China:IEEE,2007:262-267.
    [20]Aureli M,Kopman V,Porfiri M.Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites[J].IEEE/ASME Transactions on Mechatronics,2010,15(4):603-614.
    [21]Shen Q,Wang T,Liang J,et al.Hydrodynamic Performance of a Biomimetic Robotic Swimmer Actuated by Ionic Polymer-metal Composite[J].Smart Materials&Structures,2013,22(7):075035.
    [22]Guo S,Fukuda T,Asaka K.A New Type of Fish-like Underwater Microrobot[J].IEEE/ASME Transactions on Mechatronics,2003,8(1):136-141.
    [23]苏玉东,叶秀芬,郭书祥.基于IPMC驱动的自主微型机器鱼[J].机器人,2010,32(2):262-270.Su Yu-dong,Ye Xiu-fen,Guo Shu-xiang.Autonomous Micro-robot Fish Based on IPMC Drive[J].Robot,2010,32(2):262-270.
    [24]Hubbard J J,Fleming M,Palmre V,et al.Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics[J].IEEE Journal of Oceanic Engineering,2014,39(3):540-551.
    [25]Chen Z,Um T I,Bart-Smith H.A Novel Fabrication of Ionic Polymer-metal Composite Membrane Actuator Capable of 3-dimensional Kinematic Motions[J].Sensors&Actuators A Physical,2011,168(1):131-139.
    [26]Takagi K,Yamamura M,Luo Z W,et al.Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Beijing,China:IEEE,2006:1861-1866.
    [27]Yeom S W,Oh I K.A Biomimetic Jellyfish Robot Based on Ionic Polymer Metal Composite Actuators[J].Smart Material Structures,2009,18(8):085002.
    [28]Najem J,Sarles S A,Akle B,et al.Biomimetic jellyfish-inspired Underwater Vehicle Actuated by Ionic Polymer Metal Composite Actuators[J].Smart Material Structures,2012,21(9):299-312.
    [29]Kamamichi N,Yamakita M,Asaka K,et al.A Snake-like Swimming Robot Using IPMC Actuator/sensor[C]//IEEEInternational Conference on Robotics and Automation.Orlando,FL,USA:IEEE,2006:1812-1817.
    [30]Guo S,Fukuda T,Kato N,et al.Development of Underwater Microrobot Using ICPF Actuator[C]//Proceedings.1998 IEEE International Conference on Robotics and Automation.Leuven,Belgium:IEEE,1998:1829-1834.
    [31]Tan X,Drew K,Nathan U,et al.An Autonomous Robotic Fish for Mobile Sensing[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Beijing,China:IEEE,2006:5424-5429.
    [32]Shen Q,Wang T,Wen L,et al.Modelling and Fuzzy Control of an Efficient Swimming Ionic Polymer-metal Composite Actuated Robot[J].International Journal of Advanced Robotic Systems,2013,10(4):1.
    [33]Rosly M A,Yussof H,Shaari M F,et al.Speed Control Mechanism for IPMC Based Biomimetic Flapping Thruster[C]//IEEE International Symposium on Robotics and Intelligent Sensors.Ottawa:IEEE,2017:218-223.
    [34]Webb B P W,Weihs D.Fish Biomechanics[M].NewYork,America:Praeger Publishers,1983:312-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700