空气雾化喷嘴的设计与实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of an Air Atomized Nozzle and Its Experimental Study
  • 作者:吴恩启 ; 顾自明 ; 赵兵 ; 徐智保
  • 英文作者:WU En-qi;GU Zi-ming;ZHAO Bing;XU Zhi-bao;College of Mechanical Engineering,Shanghai University of Science and Technology;
  • 关键词:空气雾化喷嘴 ; 气液夹角 ; 图像处理
  • 英文关键词:air atomized nozzle;;inclusion angle between the gas and liquid;;image processing
  • 中文刊名:RNWS
  • 英文刊名:Journal of Engineering for Thermal Energy and Power
  • 机构:上海理工大学机械工程学院;
  • 出版日期:2018-04-18 14:10
  • 出版单位:热能动力工程
  • 年:2018
  • 期:v.33;No.209
  • 基金:国家自然科学基金(51205255);; 国家科技支撑计划(2015BAK16B04)~~
  • 语种:中文;
  • 页:RNWS201804017
  • 页数:7
  • CN:04
  • ISSN:23-1176/TK
  • 分类号:77-83
摘要
为提高喷嘴雾化效率,基于维多辛斯曲线理论对喷嘴出口结构进行优化,研制出一种新型渐缩式空气雾化喷嘴,并搭建了喷雾实验平台进行实验。利用图像处理技术对实验数据进行分析,提取不同结构喷嘴的喷雾粒径和雾化锥角分布,通过对比仿真和试验结果分析喷嘴气液夹角对雾化效果的影响。研究表明:喷嘴喷雾实验和仿真结果较吻合,相对误差在6.5%以内;喷嘴气液夹角α=20°时,雾化锥角最大,液滴索特尔平均直径最小,雾化效果最好。
        To enhance the atomization efficiency of a nozzle,the structure of the nozzle at the outlet was optimized based on the Witozinsky curve theory and a novel converging type air atomized nozzle was developed with an atomization test platform being set up for conducting various tests. The image processing technology was used to perform an analysis of the test data to extract the distribution of the particle diameter and the cone angle atomized by using the nozzle with various structures. Through contrasting the simulation results with the test ones,the influence of the inclusion angle between the gas and liquid inside the nozzle on the atomization effectiveness was analyzed. It has been found that the atomization test results of the nozzle are in relatively good agreement with the simulation ones and the relative error is within a range of 6. 5%. When the inclusion angle between the gas and liquid inside the nozzle α = 20°,the atomization cone angle will be the maximum and the Sauter mean diameter of the droplets will be the minimum,therefore,the atomization effectiveness will be the best.
引文
[1]陈鹏飞,费俊,李龙飞,等.大流量标准Y型喷嘴内部流动特性的数值模拟[J].热能动力工程,2014,29(6):688-691.CHEN Peng-fei,FEI Jun,LI Long-fei,et al.Numerical simulation of the flow characteristics inside a large flow rate Y Type nozzle[J].Journal of Engineering for Thermal Energy And Power,2014,29(6):688-691.
    [2]庄壮,江永军.FLUENT在气液两相雾化喷嘴模拟分析中的应用[J].广东化工,2014,41(274):203-204.ZHUANG Zhuang,JIANG Yong-jun,et al.Applications of the software Fluent in simulation and analysis fo gas-liquid two-phase atomization nozzles[J].Guangdong Chemical Industry,2014,41(274):203-204.
    [3]Ferreira G,Garcia J A,Barreras.Design optimization of twin-fluid atomizers with aninternal mixing chamber for heavy fuel oils[J].Fuel processing technology,2009,90(2):270-278.
    [4]刘丽艳,杨静,等.空气雾化喷嘴的液滴雾化性能实验研究[J].化学工业与工程,2013,30(3):60-65.LIU li-yan,YANG Jing,et al.Experimental investigation of the liquid droplet atomization performance of an air atomized nozzle[J].Chemical Industay and Engineering,2013,30(3):60-65.
    [5]张竞争,刘定平.液包式雾化喷嘴出口锥角优化实验研究[J].热能动力工程,2013,28(1):57-60.ZHANG Jing-zheng,LIU Ding-ping.Experimental study of the optimization of the outlet cone angle of a liquid bag type atomization nozzle[J].Journal of Engineering for Thermal Energy and Power,2013,28(1):57-60.
    [6]Kun Liu,Yonggang Yu,Na Zhao.Experimental Study and Numerical Simulation on Spray Characteristics of New-Type Air-Assist Nozzle[J].Journal of Harbin Institute of Technology,2016(1):34-40.
    [7]Rui Ma;Bo Dong;Zhongqiang Yu;An experimental study on the spray characteristics of the air-blast atomizer[J].Applied Thermal Engineering,2015,(88):149-156.
    [8]白鹏博,邢玉明,王泽.内混式喷嘴雾化特性的试验与仿真研究[J].流体机械,2015,43(2):1-6.BAI Peng-bo,XING Yu-ming,WANG Ze.Study of the experiment and simulation of the atomization characteristics of an internally mixed nozzle[J].Fluid Machinery,2015,43(2):1-6.
    [9]石零,陈文,杨成武,等.小型喷嘴雾化特性的实验研究[J].江汉大学学报(自然科学版),2016,44(1):5-10.SHI Ling,CHEN Wen,YANG Cheng-wu,et al.An experimental study of the atomization characteristics of a small-sized nozzle[J].Journal of Jianghan University(Natural Science Edition),2016,44(1):5-10.
    [10]张新铭,罗晴,洪光,等.高压水扇形喷嘴结构参数对内部流场影响的数值模拟[J].热能动力工程,2012,27(3):301-306.ZHANG Xin-ming,LUO Qing,HONG Guang,et al.Numerical simulation of the influence of the structural parameters of a high pressure water sector-shaped nozzle on its internal flow field[J].Journal of Engineering for Thermal Energy and Power,2012,27(3):301-306.
    [11]张亮,陆振华,刘玉峰.背压环境下压力喷嘴雾化特性实验研究[J].热能动力工程,2016(4):74-78.ZHANG Liang,LU Zhen-hua,LIU Yu-feng.Experimental study of the atomization characteristics of a pressure nozzle at a back pressure[J].Journal of Engineering for Thermal Energy and Power,2016,31(4):74-78.
    [12]于忠强.空气雾化喷嘴雾化特性的实验研究[D].大连:大连理工大学,2014.YU Zhong-qiang.An experimental study on the atomization characteristics of an air atomization nozzle[D].Dalian:Dalian University of Technology,2014.
    [13]张齐龙,曹建明,任欢.喷雾粒径测试方法的比较研究[J].内燃机,2014(5):27-30.ZHANG Qi-long,CAO Jian-ming,REN Huan.Investigation of the comparison of the methods for measuring atomization particle diameters[J].Internal Combustion Engines,2014(5):27-30.
    [14]张丽丽,周慎杰.冲击式气流喷嘴雾化模型[J].武汉理工大学学报,2007,29(8):135-138.ZHANG Li-li,ZHOU Shen-jie.Atomization model for impingement type gas flow nozzles[J].Journal of Wuhan University of Technology,2007,29(8):135-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700