小鼠非酒精性脂肪性肝炎中线粒体功能的障碍
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dysfunction of mitochondrial in mice with non-alcoholic steatohepatitis
  • 作者:后文琳 ; 潘雯 ; 付思艺 ; 宋美怡 ; 王菲
  • 英文作者:HOU Wenlin;PAN Wen;FU Siyi;SONG Meiyi;WANG Fei;School of Life Sciences, Shanghai University;Department of Gastroenterology, Tongji Hospital Affiliated to Tongji University;
  • 关键词:非酒精性脂肪性肝炎 ; 线粒体 ; 能量代谢
  • 英文关键词:non-alcoholic steatohepatitis(NASH);;mitochondria;;energy metabolism
  • 中文刊名:SDXZ
  • 英文刊名:Journal of Shanghai University(Natural Science Edition)
  • 机构:上海大学生命科学学院;同济大学附属同济医院消化内科;
  • 出版日期:2019-02-28
  • 出版单位:上海大学学报(自然科学版)
  • 年:2019
  • 期:v.25;No.145
  • 基金:国家自然科学基金资助项目(81400635)
  • 语种:中文;
  • 页:SDXZ201901001
  • 页数:9
  • CN:01
  • ISSN:31-1718/N
  • 分类号:5-13
摘要
[目的]研究非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)中线粒体功能的变化.[方法] C57BL/6小鼠采用胆碱蛋氨酸缺乏(methionine choline deficient, MCD)饮食诱导小鼠NASH模型,喂食胆碱蛋氨酸充足(methionine choline sufficient, MCS)组作为对照; 4周后,处死小鼠同时取血清和肝组织.生化指标检测血清丙氨酸氨基转酶(alanineaminotransferase, ALT)活性、天冬氨酸氨基转移酶(aspartate aminotransferase, AST)活性、肝组织甘油三酯(triglyceride, TG)、总胆固醇(total cholesterol, TC)水平;观察肝组织病理学变化;实时荧光定量聚合酶链式反应(quantificational real-time polymerase chainreaction, qRT-PCR)检测小鼠肝脏组织中mtDNA/nDNA和nDNA,以及由线粒体DNA编码的的基因、线粒体DNA复制相关的基因、与小鼠肝脏中能量代谢相关的基因的表达变化.[结果]与MCS模型组相比, MCD组ALT, AST, TG水平明显升高,但TC水平降低;肝组织变性严重,产生大量脂肪空泡,小叶结构破坏严重,炎细胞浸润明显; MCD模型组线粒体生成能力、能量代谢水平和DNA修复能力显著降低.[结论]小鼠非酒精性脂肪性肝炎中线粒体功能发生障碍.
        [Objective] This research is to study the changes of mitochondrial function in non-alcoholic steatohepatitis(NASH). [Methods] The method is to use C57 BL/6 mice fed with choline methionine deficient(MCD) diet to induce a mouse NASH model. The choline methionine sufficient(MCS) group serves as the control group. Four weeks later, serum and liver tissue are detected when mice are sacrificed. Biochemical indicators of serum alanine aminotransferase(ALT) activity, aspartate aminotransferase(AST) activity, liver triglyceride(TG), total cholesterol(TC) levels are detected by enzymelinked immunosorbent assay. Pathological examination has also been performed. The mtDNA/nDNA and nDNA in liver tissue of mice and the expression of genes encoded by mitochondrial DNA, mitochondrial DNA replication and associated with energy metabolism in mouse liver are tested by q RT-PCR(quantificational real-time polymerase chain reaction). [Results] Compared with the MCS group, the MCD model group shows severe degeneration of liver tissue, and ALT, AST, and TG become significantly elevated, but TC levels are decreased. A large amount of fat vacuoles, severe destruction of lobular structure, and significant infiltration of inflammatory cells become increased in MCD model. In addition, the amount of mitochondrial is decreased. Furthermore, the capacity of energy metabolism and DNA repair of the MCD model group are significantly reduced. [Conclusion] Mitochondrial dysfunction occurs in mice with non-alcoholic steatohepatitis.
引文
[1] Bjornsson E, Angulo P. Non-alcoholic fatty liver disease[J]. Scand J Gastroenterol, 2007,42(9):1023-1030.
    [2] Hubscher S G. Histological assessment of non-alcoholic fatty liver disease[J]. Histopathology,2006, 49(5):450-465.
    [3] Neuschwander-Tetri B A, Clark J M, Bass N M, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease[J]. Hepatology, 2010, 52(3):913-924.
    [4] Chalasani N, Younossi Z, Lavine J E, et al. The diagnosis and management of nonalcoholic fatty liver disease:practice guidance from the American Association for the Study of Liver Diseases[J]. Hepatology, 2018, 67(1):328-357.
    [5] Bellentani S. The epidemiology of non-alcoholic fatty liver disease[J]. Liver Int, 2017, 37(S1):81-84.
    [6] Cohen J C, Horton J D, Hobbs H H. Human fatty liver disease:old questions and new insights[J]. Science, 2011, 332(37):1519-1523.
    [7] Pessayre D, Fromenty B. NASH:a mitochondrial disease[J]. J Hepatol, 2005, 42(6):928-940.
    [8] Koch L. Metabolism:mitochondrial pathways in NAFLD[J]. Nat Rev Endocrinol, 2012, 8(3):129.
    [9] Huttenlocher P R, Solitare G B, Adams G. Infantile diffuse cerebral degeneration with hepatic cirrhosis[J]. Arch Neurol, 1976, 33(3):186-192.
    [10] Gomez-Zorita S, Fernandez-Quintela A, Macarulla M T, et al. Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress[J]. Br J Nutr, 2012, 107(2):202-210.
    [11] Rizki G, Arnaboldi L, Gabrielli B, et al. Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1[J]. J Lipid Res,2006, 47(10):2280-2290.
    [12] Lee G S, Yan J S, Ng R K, et al. Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury[J]. J Lipid Res, 2007, 48(8):1885-1896.
    [13] Lin J, Wu H, Tarr P T, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres[J]. Nature, 2002, 418(6899):797-801.
    [14] Greenfield V, Cheung O, Sanyal A J. Recent advances in nonalcholic fatty liver disease[J]. Curr Opin Gastroenterol, 2008, 24(3):320-327.
    [15] Kashi M R, Torres D M, Harrison S A. Current and emerging therapies in nonalcoholic fatty liver disease[J]. Semin Liver Dis, 2008, 28(4):396-406.
    [16] Ioannou G N. The role of cholesterol in the pathogenesis of NASH[J]. Trends Endocrinol Metab, 2016, 27(2):84-95.
    [17] Pariente A. Management of non alcoholic fatty liver diseases in adults[J]. Rev Prat, 2012,62(10):1421-1425.
    [18] Ding W X. Role of autophagy in liver physiology and pathophysiology[J]. World J Biol Chem,2010, 1(1):3-12.
    [19] Basaranoglu M, Basaranoglu G, Senturk H. From fatty liver to fibrosis:a tale of “second hit”[J]. World J Gastroenterol, 2013, 19(8):1158-1165.
    [20] Cortez-Pinto H, Chatham J, Chacko V P, et al. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis:a pilot study[J]. JAMA Network, 1999, 282(17):1659-1664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700