两种典型肋条形状大涡模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Two Typical Rib Shapes Large Eddy Simulation
  • 作者:王卫强 ; 巴梁 ; 王国付
  • 英文作者:Wang Weiqiang;Ba Liang;Wang Guofu;College of Petroleum Engineering,Liaoning Shihua University;
  • 关键词:肋条减阻 ; 大涡模拟 ; 二次涡
  • 英文关键词:Rib drag reduction;;Large eddy simulation;;The secondary vortex
  • 中文刊名:FSSX
  • 英文刊名:Journal of Liaoning Shihua University
  • 机构:辽宁石油化工大学石油天然气工程学院;
  • 出版日期:2019-06-04 15:05
  • 出版单位:辽宁石油化工大学学报
  • 年:2019
  • 期:v.39;No.145
  • 基金:辽宁省科技厅项目“三维数字油库风险防控与应急响应系统构效”(2015020604)
  • 语种:中文;
  • 页:FSSX201903011
  • 页数:6
  • CN:03
  • ISSN:21-1504/TE
  • 分类号:60-65
摘要
在长距离输气管道中最主要的能量损失形式是湍流阻力。为了研究肋条形状对湍流情况下流过肋条的流体介质的影响规律,采用CFD软件,在雷诺数为5 300的条件下,对间隔三角形肋条和刀刃形肋条两种典型肋条进行大涡模拟,通过分析壁面阻力和流场,得出减阻效果更好的肋条形状,并找出不同形状肋条影响流场的原因。结果表明,与间隔三角形肋条相比,刀刃形肋条受到的壁面阻力更小,近壁区速度梯度更小,产生的二次涡使流场更加稳定,具有更好的减阻效果。
        The most important form of energy loss in long distance gas pipelines is turbulence resistance. In order to study the rib shape on the turbulent situation through the rib of the influence law of fluid medium, this paper uses the CFD software of triangular rib and the blade shape rib between two kinds of typical ribs large eddy simulation under Reynolds number of 5 300, the wall resistance and flow field are analyzed to obtain the shape of the rib with better drag reduction effect, and to find out the reasons why the different shape ribs affect the flow field. The results show that the blade shape ribs have smaller wall resistance and smaller velocity gradient near the wall than the spaced triangular ribs. The secondary vortices generated make the flow field more stable and have better drag reduction effect.
引文
[1] Muzzy R J. Boundary layer turbulence measurements with mass addition and combustion[J]. American Institute of Aeronautics and Astronautics,1966,4(11):2009-2016.
    [2] Malik M R,Weinstein L M,Hussaini M Y. Ion wind drag reduction[C]//American Institute of Aeronautics and Astronautics,Aerospace Sciences Meeting. New York:[s.n.],1983.
    [3] Lumley J L.Drag reduction in turbulent flow by polymer additives[J].Journal of Macromolecular Science. Part C:Polymer Reviews,1973,7(1):263-290.
    [4]王剑波,王晓霖,陈建磊,等.天然气减阻剂研究进展[J].表面技术,2016,45(2):40-49.
    [5] Aslanov P V,Maksyutenko S N,Povkh I L,et al. Turbulent flows of solutions of surface-activesub stances[J]. Fluid Dynamics,1980(1):27-33.
    [6]钱成文,刘广文,王武,等.天然气管道的内涂层减阻技术[J].油气储运,2001,20(3):1-8.
    [7] Gad-El-Hak M.Frontiers in experimental fluid mechanics[M].[S.l.]:Springer-Verlag,1989.
    [8] Hoyt J W,Sellin R H J.Three-dimensional visualization of large structures in the turbulent boundary layer[J].Experiments in Fluids,2001,30(3):295-301.
    [9] Radin I,Zakin J L,Patterson G K.Drag reduction in solid-fluid systems[J]. Aiche Journal,1975,21(2):358-371.
    [10] Hough G R. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures[J].Progress in Astronautics&Aeronautics,1981,72(5):128-143.
    [11] Wilkinson S P,Anders J B,Lazos B S,et al.Turbulent drag reduction research at NASA langley:Progress and plans[J].International Journal of Heat&Fluid Flow,1988,9(3):266-277.
    [12] Walsh M J. Viscous drag reduction in boundary layers[J]. Progress in Astronautics&Aeronautics,1990,15(3):123.
    [13] Choi H,Moin P,Kim J.Direct numerical simulation of turbulent flow over riblets[J].Journal of Fluid Mechanics,1993,255:503-539.
    [14] Sirovich L,Karlsson S.Turbulent drag reduction by passive mechanisms[J].Nature,1997,388(21):753-755.
    [15] Jung W J,Mangiavacchi N,Akhavan R. Suppression of turbulence in wall bounded flows by high-frequency spanwise oscillations[J]. Phys. Fluids,1992,4(8):1605-1607.
    [16] Choi K S,DeBisschop J R,Clayton B R. Turbulent boundary-layer control by means of spanwise-wall oscillation[J].American Institute of Aeronautics and Astronautics,1998,36(7):1157.
    [17] Gad-El-Hak M. Flow Control[M].[S.l.]:Cambridge University Press,2000.
    [18]赵志勇,董守平.沟槽面在湍流减阻中的应用[J].石油化工高等学校学报,2004,17(3):76-79.
    [19] Viswanath P R. Aircraft viscous drag reduction using riblets[J]. Progress in Aerospace Sciences,2002,38(6):571-600.
    [20]刘志华,董文才,夏飞.V型沟槽尖峰形状对减阻效果及流场特性影响的数值分析[J].水动力学研究与进展(A辑),2006,21(2):223-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700