无人机技术在潮滩地貌演变研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of unmanned aerial vehicle technology in geomorphological evolution of tidal flat
  • 作者:戴玮琦 ; 李欢 ; 龚政 ; 张长宽 ; 周曾
  • 英文作者:DAI Weiqi;LI Huan;GONG Zheng;ZHANG Changkuan;ZHOU Zeng;Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment Security,Hohai University;College of Harbor,Coastal and Offshore Engineering,Hohai University;
  • 关键词:潮滩 ; 潮沟系统 ; 数字高程模型 ; 无人机 ; 斗龙港潮滩
  • 英文关键词:tidal flats;;tidal creek system;;DEM;;unmanned aerial vehicle;;Doulong Harbor tidal flat
  • 中文刊名:SKXJ
  • 英文刊名:Advances in Water Science
  • 机构:河海大学江苏省海岸海洋资源开发与环境安全重点实验室;河海大学港口海岸与近海工程学院;
  • 出版日期:2019-04-18 15:00
  • 出版单位:水科学进展
  • 年:2019
  • 期:v.30;No.150
  • 基金:国家重点研发计划资助项目(2018YFC0407501);; 国家自然科学基金资助项目(51620105005)~~
  • 语种:中文;
  • 页:SKXJ201903006
  • 页数:14
  • CN:03
  • ISSN:32-1309/P
  • 分类号:57-70
摘要
随着海平面上升和人类活动加剧,潮滩正面临着严重威胁,掌握其形态变化规律是研究潮滩系统对外在条件响应的直接手段。以江苏斗龙港潮滩为研究对象,利用无人机倾斜摄影测量技术,结合运动恢复结构(Structure from Motion,SfM)算法,重建潮滩三维点云,生成数字高程模型和正射影像,分析潮滩滩面及潮沟系统年内变化规律。研究结果表明:潮滩高程测量精度优于9 cm,水平精度优于2 cm;高程年内变化较大,变幅高达±0.5 m;潮沟短历时变化剧烈,无明显季节性变化特征;潮沟发育过程中,宽深比范围为10~25。无人机技术不仅可以监测粉砂淤泥质潮滩滩面变化趋势,还可以观测到卫星难以捕获的中小型潮沟短历时发育过程,可为监测河口海岸短周期动力地貌过程提供有力的技术支持。
        Tidal flats are fragile and delicate. Studies show that anthropogenic pressures and sea level rise due to climate changes have an effect and play a vital role in the morphodynamics of tidal flats worldwide. It is very important to understand the regularities and morphodynamic variations of tidal flats whilst investigating the external condition responses to tidal flats. Seasonal variations' regularity on tidal networks and dissects of Doulong River intertidal flats located in Jiangsu Province,China were analysed,observed and researched. With the applications of Unmanned Aerial Vehicle(UAV) coupled with Structure-from Motion(SFM) algorithm,the Digital Elevation Modes(DEM) and orthoimage of the Doulong River intertidal flats were obtained. Results from the research clearly show the variations in tidal flats elevations are remarkable. With an increase as high as ±0.5 m within the period studied. The vertical and horizontal error of the tidal flats are less than 9 cm and 2 cm respectively. The tidal creek meanders are active with no regular changes in season throughout the year studied. The ratio of width to depth ranges from 10 cm to 25 cm during the development of a tidal creek. UAV technology provides a platform to monitor the variation trend of tidal flats elevation and the short-term evolution of small-scale tidal creeks. Thus,providing strong technical support for monitoring the short-term morphodynamic evolution of estuary and coast,which can be hard to sense by traditional remote sensing.
引文
[1]王宁舸,龚政,张长宽,等.淤泥质潮滩地貌演变中的水动力及生物过程研究进展[J].海洋工程,2016,34(1):104-116.(WANG N G,GONG Z,ZHANG C K,et al.Hydrodynamic and biological processes that control the morphodynamic evolution of mudflats:an overview[J].The Ocean Engineering,2016,34(1):104-116.(in Chinese))
    [2]CHEN X D,ZHANG C K,PATERSON D M,et al.Hindered erosion:the biological mediation of noncohesive sediment behaviour[J].Water Resources Research,2017,53(6):4787-4801.
    [3]张长宽,徐孟飘,周曾,等.潮滩剖面形态与泥沙分选研究进展[J].水科学进展,2018,29(2):269-282.(ZHANG CK,XU M P,ZHOU Z,et al.Advances in cross-shore profile characteristics and sediment sorting dynamics of tidal flats[J].Advances in Water Science,2018,29(2):269-282.(in Chinese))
    [4]陈君,王义刚,蔡辉.江苏沿海潮滩剖面特征研究[J].海洋工程,2010,28(4):90-96.(CHEN J,WANG Y G,CAI H.Profile characteristics study of the Jiangsu coast[J].The Ocean Engineering,2010,28(4):90-96.(in Chinese))
    [5]龚政,靳闯,张长宽,等.江苏淤泥质潮滩剖面演变现场观测[J].水科学进展,2014,25(6):880-887.(GONG Z,JINC,ZHANG C K,et al.Surface elevation variation of the Jiangsu mudflats:field observation[J].Advances in Water Science,2014,25(6):880-887.(in Chinese))
    [6]GONG Z,JIN C,ZHANG C K,et al.Temporal and spatial morphological variations along a cross-shore intertidal profile,Jiangsu,China[J].Continental Shelf Research,2017,144:1-9.
    [7]刘永学,张忍顺,李满春.江苏淤泥质潮滩遥感影像特征与信息提取方法研究[J].遥感信息,2004(1):23-26.(LIU YX,ZHANG R S,LI M C.Automatic extracting method of land cover in Jiangsu Tidal flat[J].Remote Sensing Information,2004(1):23-26.(in Chinese))
    [8]郑宗生,周云轩,刘志国,等.基于水动力模型及遥感水边线方法的潮滩高程反演[J].长江流域资源与环境,2008,17(5):756-760.(ZHENG Z S,ZHOU Y X,LIU Z G,et al.DEM reconstruction based on hydrodynamic model and waterline method[J].Resources and Environment in the Yangtze Basin,2008,17(5):756-760.(in Chinese))
    [9]KANG Y,DING X,XU F,et al.Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method[J].Estuarine,Coastal and Shelf Science,2017,190:11-22.
    [10]LIU Y,LI M,CHENG L,et al.Topographic mapping of offshore sandbank tidal flats using the waterline detection method:a case study on the Dongsha sandbank of Jiangsu radial tidal sand ridges,China[J].Marine Geodesy,2012,35(4):362-378.
    [11]LI H,GONG Z,DAI W,et al.Feasibility of elevation mapping in muddy tidal flats by Remotely Sensed Moisture(RSM)method[J].Journal of Coastal Research,2018,85:291-295.
    [12]HLADIK C,ALBER M.Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model[J].Remote Sensing of Environment,2012,121:224-235.
    [13]XIE W,HE Q,ZHANG K,et al.Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale[J].Geomorphology,2017,292:47-58.
    [14]CASBEER D W,KINGSTON D B,BEARDY R W,et al.Cooperative forest fire surveillance using a team of small unmanned air vehicles[J].International Journal of Systems Science,2006,37:351-360.
    [15]张园,陶萍,梁世祥,等.无人机遥感在森林资源调查中的应用[J].西南林业大学学报,2011,31(3):49-53.(ZHANG Y,TAO P,LIANG S X,et al.Research on application of UAV RS techniques in forest inventories[J].Journal of Southwest Forestry University,2011,31(3):49-53.(in Chinese))
    [16]AASEN H,BURKART A,BOLTEN A,et al.Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring:from camera calibration to quality assurance[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,108:245-259.
    [17]SMITH M W,CARRIVICK J L,QUINCEY D J.Structure from motion photogrammetry in physical geography[J].Progress in Physical Geography,2016,40(2):247-275.
    [18]IMMERZEEL W W,KRAAIJENBRINK P D A,SHEA J M,et al.High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles[J].Remote Sensing of Environment,2014,150:93-103.
    [19]SHAHBAZI M,SOHN G,THAU J,et al.Development and evaluation of a UAV-photogrammetry system for precise 3-D environmental modeling[J].Sensors,2015,15(12):27493-27524.
    [20]KR■K B,BLI■AN P,PAULIKOV■ A,et al.Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study[J].Measurement,2016,91:276-287.
    [21]De REU J,DE SMEDT P,HERREMANS D,et al.On introducing an image-based 3D reconstruction method in archaeological excavation practice[J].Journal of Archaeological Science,2014,41:251-262.
    [22]周国奎,张帆,张慎满,等.靖江王陵三维数字化系统设计与关键技术研究[J].测绘通报,2015(8):105-109.(ZHOUG K,ZHANG F,ZHANG S M,et al.Research on design and key technology of 3-D digital system of Jingjiang Vassal Mausoleums[J].Bulletin of Surveying and Mapping,2015(8):105-109.(in Chinese))
    [23]STORLAZZI C D,DARTNELL P,HATCHER G A,et al.End of the chain?Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion(Sf M)technology[J].Coral Reefs,2016,35(3):889-894.
    [24]KALACSKA M,ARROYO-MORA J,de GEA J,et al.Videographic analysis of eriophorum vaginatum spatial coverage in an ombotrophic bog[J].Remote Sensing,2013,5(12):6501-6512.
    [25]LEHMANN J,M■NCHBERGER W,KNOTH C,et al.High-resolution classification of south patagonian peat bog microforms reveals potential gaps in up-scaled CH4 fluxes by use of Unmanned Aerial System(UAS)and CIR imagery[J].Remote Sensing,2016,8(12):173.
    [26]JAUD M,GRASSO F,LE DANTEC N,et al.Potential of UAVs for monitoring mudflat morphodynamics(application to the seine estuary,France)[J].ISPRS International Journal of Geo-Information,2016,5(4):50.
    [27]LONG N,MILLESCAMPS B,GUILLOT B,et al.Monitoring the topography of a dynamic tidal inlet using UAV imagery[J].Remote Sensing,2016,8(5):387.
    [28]HARWIN S,LUCIEER A.Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned Aerial Vehicle(UAV)imagery[J].Remote Sensing,2012,4(12):1573-1599.
    [29]任美锷,张忍顺,杨巨海.江苏王港地区淤泥质潮滩的沉积作用[J].海洋通报,1984,3(1):40-54.(REN M E,ZHANG R S,YANG J H.Sedimentation on tidal mud flat in Wanggang area,Jiangsu Province,China[J].Marine Science Bulletin,1984,3(1):40-54.(in Chinese))
    [30]任美锷,张忍顺,杨巨海,等.风暴潮对淤泥质海岸的影响:以江苏省淤泥质海岸为例[J].海洋地质与第四纪地质.1983,3(4):1-24.(REN M E,ZHANG R S,YANG J H,et al.The influence of storm tide on mud plain coast:with special reference to Jiangsu Province[J].Marine Geology&Quaternary Geology,1983,3(4):1-24.(in Chinese))
    [31]张忍顺.江苏省淤泥质潮滩的潮流特征及悬移质沉积过程[J].海洋与湖沼,1986,17(3):235-245.(ZHANG R S.Characteristics of tidal current and sedimentation of suspended load on tidal mud flat in Jiangsu Province[J].Oceanologia Et Limnologia Sinica,1986,17(3):235-245.(in Chinese))
    [32]高抒,朱大奎.江苏淤泥质海岸剖面的初步研究[J].南京大学学报(自然科学版),1988,24(1):75-84.(GAO S,ZHU D K.The profile of Jiangsu's mud coast[J].Journal of Nanjing University(Natural Sciences Edition),1988,24(1):75-84.(in Chinese))
    [33]马洪羽,丁贤荣.江苏岸外条子泥潮滩地形遥感遥测模拟[J].地理与地理信息科学.2016,32(1):78-83.(MA H Y,DING X R.Remote sensing and remote measuring approach to simulate the Tiaozini tidal flat terrain field off Jiangsu coast[J].Geography and Geo-Information Science,2016,32(1):78-83.(in Chinese))
    [34]刘秀娟,高抒,汪亚平.淤长型潮滩剖面形态演变模拟:以江苏中部海岸为例[J].中国地质大学学报(地球科学),2010,35(4):542-550.(LIU X J,GAO S,WANG Y P.Modeling the shore-normal profile shape evolution for an accretional tidal flat on the central Jiangsu coast[J].Journal of China University of Geosciences(Earth Science),2010,35(4):542-550.(in Chinese))
    [35]龚政,吕亭豫,耿亮,等.开敞式潮滩-潮沟系统发育演变动力机制:Ⅰ:物理模型设计及潮沟形态[J].水科学进展,2017,28(1):86-95.(GONG Z,LYU T Y,GENG L,et al.Mechanisms underlying the dynamic evolution of an open-coast tidal flat-creek system:I:physical model design and tidal creek morphology[J].Advances in Water Science,2017,28(1):86-95.(in Chinese))
    [36]龚政,耿亮,吕亭豫,等.开敞式潮滩-潮沟系统发育演变动力机制:Ⅱ:潮汐作用[J].水科学进展,2017,28(2):231-239.(GONG Z,GENG L,LYU T Y,et al.Mechanisms underlying the dynamic evolution of an open-coast tidal flat-creek system:Ⅱ:influence of tidal range[J].Advances in Water Science,2017,28(2):231-239.(in Chinese))
    [37]龚政,严佳伟,耿亮,等.开敞式潮滩-潮沟系统发育演变动力机制:Ⅲ:海平面上升影响[J].水科学进展,2018,29(1):109-117.(GONG Z,YAN J W,GENG L,et al.Mechanisms underlying the dynamic evolution of an open-coast tidal flatcreek system:Ⅲ:impact of sea level rise[J].Advances in Water Science,2018,29(1):109-117.(in Chinese))
    [38]龚政,白雪冰,靳闯,等.基于植被和潮动力作用的潮滩剖面演变数值模拟[J].水科学进展,2018,29(6):877-886.(GONG Z,BAI X B,JIN C,et al.A numerical model for the cross-shore profile evolution of tidal flats based on vegetation growth and tidal processes[J].Advances in Water Science,2018,29(6):877-886.(in Chinese))
    [39]张长宽,江苏省近海海洋环境资源基本现状[M].北京:海洋出版社,2013:103-109.(ZHANG C K.The basic status of marine environmental resources in the coast of Jiangsu[M].Beijing:China Ocean Press,2013:103-109.(in Chinese))
    [40]龚政,张长宽,陶建峰,等.淤长型泥质潮滩双凸形剖面形成机制[J].水科学进展,2013,24(2):212-219.(GONGZ,ZHANG C K,TAO J F,et al.Mechanisms for the evolution of double-convex cross-shore profile over accretional mudflats[J].Advances in Water Science,2013,24(2):212-219.(in Chinese))
    [41]张孝严,李欢,陈丽吉,等.潮滩含水量的临界光谱特性及反演模型研究[J].海洋科学进展,2019,37(1):65-74.(ZHANG X Y,LI H,CHEN L J,et al.Critical spectral characteristic and moisture retrieval models of intertidal sediments[J].Advances in Marine Science,2019,37(1):65-74.(in Chinese))
    [42]WANG X,KE X.Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast,China[J].Sedimentary Geology,1997,112(1):105-122.
    [43]ZHANG Q,GONG Z,ZHANG C,et al.Velocity and sediment surge:what do we see at times of very shallow water on intertidal mudflats?[J].Continental Shelf Research,2016,113:10-20.
    [44]RUZGIEN■B,BERTE■KA T,GE■YTE S,et al.The surface modelling based on UAV Photogrammetry and qualitative estimation[J].Measurement,2015,73:619-627.
    [45]吕亭豫,龚政,张长宽,等.粉砂淤泥质潮滩潮沟形态特征及发育演变过程研究现状[J].河海大学学报(自然科学版),2016,44(2):178-188.(LYU T Y,GONG Z,ZHANG C K,et al.Reviews of morphological characteristics and evolution processes of silty mud tidal creeks[J].Journal of Hohai University(Natural Sciences),2016,44(2):178-188.(in Chinese))
    [46]LEOPOLD L B,COLLINS J N,COLLINS L M.Hydrology of some tidal channels in estuarine marshland near San Francisco[J].Catena,1993,20(5):469-493.
    [47]D'ALPAOS A,LANZONI S,MUDD S M,et al.Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels[J].Estuarine,Coastal and Shelf Science,2006,69:311-324.
    [48]STRAHLER A N.Dynamic basis of geomorphology[J].Geological Society of America Bulletin,1952,63(9):923-938.
    [49]ZEFF M L.Salt marsh tidal channel morphometry:applications for wetland creation and restoration[J].Restoration Ecology,1999,7(2):205-211.
    [50]MARANI M,LANZONI S,ZANDOLIN D,et al.Tidal meanders[J].Water Resources Research,2002,38(11):1225.
    [51]D'ALPAOS A,LANZONI S,MARANI M,et al.Tidal network ontogeny:channel initiation and early development[J].Journal of Geophysical Research,2005,110(F2):F2001.
    [52]吴德力,沈永明,方仁建.江苏中部海岸潮沟的形态变化特征[J].地理学报,2013,68(7):955-965.(WU D L,SHEN Y M,FANG R J.A morphological analysis of tidal creek network patterns on the central Jiangsu coast[J].Acta Geographica Sinica,2013,68(7):955-965.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700