促生剂投量对菌剂-促生剂协同修复沉积物的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of biostimulant dosage on the remediation of sediments in the collaborative repair of aerobic denitrifiers and biostimulant
  • 作者:刘晓朵 ; 孙井梅 ; 汤茵琪 ; 李檬 ; 邹亚男 ; 黄建军
  • 英文作者:LIU Xiaoduo;SUN Jingmei;TANG Yinqi;LI Meng;ZOU Yanan;HUANG Jianjun;School of Environmental Science and Engineering, Tianjin University;
  • 关键词:沉积物修复 ; 高通量测序 ; 酶活性 ; 菌群分析 ; 微生态环境演替
  • 英文关键词:sediment remediation;;high-throughput sequencing;;enzyme activity;;consortium structure analysis;;improvement of micro-ecological environment
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:天津大学环境科学与工程学院;
  • 出版日期:2019-01-23 16:15
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(No.51378339,51778410)
  • 语种:中文;
  • 页:HJXX201906013
  • 页数:9
  • CN:06
  • ISSN:11-1843/X
  • 分类号:105-113
摘要
采用5个110 L的模拟河道反应器,在投加菌剂的基础上(底泥稳定后向底泥和水中分别注射浓度为0.09%和0.03%的菌剂),生物促生剂投量分别设计为0(空白对照实验)、0.08、0.09、0.10和0.11 g·L~(-1),通过为期115 d的修复实验研究菌剂与促生剂协同作用时底泥微生物群落特征变化规律,进而分析其对底泥修复效果的影响.实验表明,投加促生剂后,115 d时Chloroflexi、Proteobacteria、Firmicutes、Betaproteobacteria及Bacteroidetes等主要功能菌群相对丰度增加,脲酶活性与蛋白酶活性后期时总体上低于单独投加菌剂组.促生剂投量为0.10 g·L~(-1)时,上覆水COD_(Cr)稳定浓度为16.82 mg·L~(-1),低于其余各组;底泥TOC含量由初始的0.808%下降至第115 d时的0.687%,去除率为14.9%,显著高于其余各组;促生剂投量为0.11 g·L~(-1)时,底泥全氮去除率最高为14.8%.生物促生剂促使微生物群落向更适宜降解去除氮素及有机质的方向演替,有效改善底泥环境.
        Five 110 L simulated river reactors were used on the basis of the addition of aerobic denitrifiers(sediment and water were injected at a concentration of 0.09% and 0.03% of the aerobic denitrifiers), and the biostimulant dosage was designed as 0(blank control), 0.08, 0.09, 0.10 and 0.11 g·L~(-1), respectively. Through a 115 d restoration experiment, the various characteristics of sediment microbial communities in the collaborative effect of biostimulant and aerobic denitrifiers were studied, and then its impact on sediment remediation was analyzed. The results show that the relative abundance of Chloroflexi, Proteobacteria, Firmicutes, Betaproteobacteria, and Bacteroidetes increased after 115 days. The activities of urease and protease were generally lower in the later period than those in the control group. The concentration of COD_(Cr) in the overlying water was 16.82 mg·L~(-1) when the dosage of the biostimulant was 0.10 g·L~(-1), which was lower than the other groups. The content of TOC in the sediment decreased from 0.808% to 0.687% on the 115 th day, and the removal rate was 14.9%, which was significantly higher than that of the other groups. The highest total nitrogen removal rate of sediments was 14.8% when the dosage of biostimulant was 0.11 g·L~(-1). Biostimulant promotes microbial communities acclimation for the removal of nitrogen and organic matter and effectively improves the sediment environment.
引文
Chen C,Xu X,Xie P,et al.2017.Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations[J].Chemosphere,171:294-301
    Eggleton J,Thomas K V.2004.A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events[J].Environment International,30(7):973-980
    Getha K,Vikineswary S,Wong W H,et al.2005.Evaluation of Streptomyces sp.strain g10 for suppression of Fusarium wilt and rhizosphere colonization in pot-grown banana plantlets[J].Journal of Industrial Microbiology & Biotechnology,32(1):24-32
    高璟赟.2010.稻田土壤氧化酶活性与有机碳转化关系研究[D].武汉:华中农业大学
    关松荫.1986.土壤酶及其研究法[M].北京:农业出版社.294-306
    贺宝根,周乃晟,袁宣民.1999.底泥对河流的二次污染浅析[J].环境污染与防治,21(3):41-43
    He T,Guan W,Luan Z,et al.2016.Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment[J].Applied Microbiology & Biotechnology,100(3):1479-1488
    Huang C,Shi Y,Gamal El-Din M,et al.2016.Optimization of ozonation combined with integrated fixed-film activated sludge (IFAS) in the treatment of oil sands process-affected water (OSPW)[J].International Biodeterioration & Biodegradation,112:31-41
    Kampmann K,Ratering S,Kramer I,et al.2012.Unexpected stability of bacteroidetes and firmicutes communities in laboratory biogas reactors fed with different defined substrates[J].Applied and Environmental Microbiology,78(7):2106-2119
    林先贵.2010.土壤微生物研究原理与方法[M].北京:高等教育出版社.254-255
    刘成.2012.生物促生剂联合微生物菌剂修复城市黑臭河道底泥实验研究[D].南宁:广西大学
    刘晓伟,谢丹平,李开明,等.2013.投加生物促生剂对底泥微生物群落及氮磷的影响[J].中国环境科学,33(S1):87-92
    吕梦怡.2016.河道底泥的化学-生物协同修复效果及作用机制[D].天津:天津大学
    Martin F,Torelli S,Paslier D L,et al.2012.Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene[J].Environmental Pollution,162(162):345-353
    Milestone C B,Stuthridge T R,Fulthorpe R R.2007.Role of high molecular mass organics in colour formation during biological treatment of pulp and paper wastewater[J].Water Science & Technology A Journal of the International,55(6):191
    Miura Y,Watanabe Y,Okabe S.2007.Significance of chloroflexi in performance of submerged Membrane Bioreactors (MBR) treating municipal wastewater[J].Environmental Science & Technology,41(22):7787-7794
    Morgante V,Lópezlópez A,Flores C,et al.2010.Bioaugmentation with Pseudomonas sp.strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils[J].Fems Microbiology Ecology,71(1):114-126
    Mounteer A.2009.Improvement of eucalyptus bleached kraft pulp effluent treatment through combined ozone-biological treatment[J].World Pulp & Paper,7(7):26
    彭祺,郑金秀,涂依,等.2007.污染底泥修复研究探讨[J].环境科学与技术,(2):103-106
    Reynolds C M,Wolf D C,Armbruster J A.1985.Factors related to urea hydrolysis in soils[J].Soil Science Society of America Journal,49(1):104-108
    孙远军.2009.城市河流底泥污染与原位稳定化研究[D].西安:西安建筑科技大学
    Tang Y,Li M,Xu D,et al.2017.Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment[J].Environmental Science & Pollution Research,25(6):5980-5993
    Toberman H,Evans C D,Freeman C,et al.2008.Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland[J].Soil Biology and Biochemistry,40(6):1519-1532
    Wilczek S,Fischer H,Pusch M T.2005.Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large Lowland River[J].Microbial Ecology,50(2):253-267
    Xiong J,Li G,An T.2016.The microbial degradation of 2,4,6-tribromophenol (TBP) in water/sediments interface:Investigating bioaugmentation using Bacillus sp.GZT[J].Science of the Total Environment,575:573-580
    郗文君,张安龙,杜飞,等.2015.生物促生剂处理造纸废水的最佳工艺条件[J].纸和造纸,34(11):61-65
    杨晓杰.2016.化学-生物生态协同修复受污染底泥的效果及评价[D].天津:天津大学
    余光伟,雷恒毅,刘广立,等.2007.重污染感潮河道底泥释放特征及其控制技术研究[J].环境科学学报,27(9):1476-1484
    中华人民共和国国家质量监督检验检疫总局.2003.GB 19106-2003 次氯酸钠溶液[S].北京:中国标准出版社
    中华人民共和国国家质量监督检验检疫总局.2002.GB/T 601-2002 化学试剂:标准滴定溶液的制备[S].北京:中国标准出版社
    中华人民共和国环境保护部.2015a.HJ 501-2009 水质总有机碳的测定:燃烧氧化-非分散红外吸收法[S].北京:中国环境科学出版社
    中华人民共和国环境保护部.2015b.HJ 717-2014 土壤质量全氮的测定:凯氏法[S].北京:中国环境科学出版社
    钟萍,李丽,李静媚,等.2007.河流污染底泥的生态修复[J].生态科学,26(2):181-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700