基于20/400μm增益光纤的3 kW近单模全光纤放大器及其长时工作特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3 kW Near-Single-Mode All-Fiber Amplifier Based on 20/400 μm Gain Fiber and Its Long Time Operation Characteristics
  • 作者:罗雪雪 ; 奚小明 ; 史尘 ; 王小林 ; 张汉伟 ; 陶汝茂 ; 韩凯 ; 周朴 ; 许晓军
  • 英文作者:Luo Xuexue;Xi Xiaoming;Shi Chen;Wang Xiaolin;Zhang Hanwei;Tao Rumao;Han Kai;Zhou Pu;Xu Xiaojun;College of Advanced Interdisciplinary Studies,Natinal University of Defense Technology;State Key Laboratory of Pulsed Power Laser Technology;Hunan Provincial Key Laboratory of High Energy Laser Technology;
  • 关键词:光纤光学 ; 光纤放大器 ; 模式不稳定 ; 非线性效应
  • 英文关键词:fiber optics;;fiber amplifier;;mode instability;;nonlinear effects
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:国防科技大学前沿交叉学科学院;脉冲功率激光技术国家重点实验室;高能激光技术湖南省重点实验室;
  • 出版日期:2018-11-23 10:15
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.506
  • 基金:国家自然科学基金(61505260,61735007)
  • 语种:中文;
  • 页:JJZZ201902003
  • 页数:8
  • CN:02
  • ISSN:31-1339/TN
  • 分类号:23-30
摘要
利用波长为976 nm的抽运源对基于纤芯/内包层直径为20/400μm的增益光纤放大器进行双向抽运,通过优化光纤弯曲半径,合理选择抽运方式并优化抽运功率配比,可有效抑制横向模式不稳定效应和受激拉曼散射,获得了输出功率大于3 kW的近单模全光纤放大器。光纤放大器的光-光转换效率约为73%,受激拉曼散射抑制比为20 dB,光束质量因子小于1.7,时/频域上没有出现模式不稳定现象。对该放大器进行10 h的连续测试,结果表明,该激光器性能稳定,有望用于工业加工等领域。
        The 976 nm laser diodes are utilized to provide the bi-directional pumping sources for the fiber amplifier based on 20/400 μm gain fiber. The transverse mode instability and the stimulated Raman scattering(SRS) effects are effectively suppressed under the operation of optimizing the coiling bending of gain fiber, pumping method, and pumping power distribution. A 3 kW level all-fiber amplifier with near-single-mode output is finally achieved. The optical-to-optical efficiency is around 73%, the SRS rejection ratio is 20 dB, and the beam quality factor is below 1.7. There are no mode instability characteristics detected in the time/frequency domain. A continuous 10 h test of this amplifier is carried out and the results show that the amplifier is stable, and is possible for its application in areas such as industrial processes.
引文
[1] Zhang J, Pan Y Z, Hu G J, et al. Application and forecast of high power fiber lasers[J]. Semiconductor Optoelectronics, 2003, 24(4): 222-226. 张军, 潘玉寨, 胡贵军, 等. 高功率光纤激光器的应用与展望 [J]. 半导体光电, 2003, 24(4): 222-226.
    [2] Wang T J, Li Y T, Yang S L, et al. High power fiber laser & its application[C]. National Conference on Photoelectric Technology and Systems, 2003: 1198-1202. 王天及, 李耀棠, 杨世宁, 等. 高功率光纤激光器及其应用[C]. 全国光电技术与系统学术会议, 2003: 1198-1202.
    [3] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): 63-92.
    [4] Song Z Q. The development of high-power fiber laser and its applications[J]. Shandong Science, 2008, 21(6): 72-77. 宋志强. 大功率光纤激光器技术及其应用[J]. 山东科学, 2008, 21(6): 72-77.
    [5] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.
    [6] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.
    [7] Zhu J J, Zhou P, Ma Y X, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654.
    [8] Shi C, Tao R M, Wang X L, et al. New progress and phenomena of modal instability in fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201004. 史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44(2): 0201004.
    [9] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.
    [10] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722.
    [11] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.
    [12] Otto H J, Stutzki F, Modsching N, et al. 2 kW average power from a pulsed Yb-doped rod-type fiber amplifier[J]. Optics Letters, 2014, 39(22): 6446-6449.
    [13] Wang X L, Tao R M, Xiao H, et al. Experimental studies of mode instability and thermal effects in all-fiber amplifier[C]. Advance Solid-State Laser Congress, 2013: JTh2A.44.
    [14] Yang B L, Zhang H W, Shi C, et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme[J]. Optics Express, 2016, 24(24): 27828-27835.
    [15] Laurila M, J?rgensen M M, L?gsgaard J, et al. Highly efficient 90 μm core rod fiber amplifier delivering >300 W without beam instabilities[C]. Conference on Lasers and Electro-Optics-International Quantum Electronics Conference, 2013: 1.
    [16] Puju P V, Zelenova M V, Tyrtyshnyy V A. Mode instability observation in fiber amplifier of single-frequency radiation at 1560 nm wavelength[C]. International Conference Laser Optics, 2016: S1-S15.
    [17] Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925.
    [18] Jauregui C, Eidam T, Otto H J, et al. Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(1): 440-451.
    [19] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.
    [20] Ward B, Robin C,Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.
    [21] Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 2013, 21(3): 2642-2656.
    [22] Tao R M, Ma P F, Wang X L, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17(4): 045504.
    [23] Tao R M, Ma P F, Wang X L,et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 2017, 14(2): 025002.
    [24] Shi C, Su R T, Zhang H W, et al. Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes[J]. IEEE Photonics Journal, 2017, 9(3): 1-10.
    [25] Laurila M, Saby J, Alkeskjold T T, et al. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser[J]. Optics Express, 2011, 19(11): 10824-10833.
    [26] Alkeskjold T T, Laurila M, Scolari L, et al. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier[J]. Optics Express, 2011, 19(8): 7398-7409.
    [27] Robin C,Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3): 666-669.
    [28] Jauregui C, Otto H J,Stutzki F, et al. Passive mitigation of mode instabilities[J]. Proceedings of SPIE, 2014, 8961: 896128.
    [29] Tao R M, Ma P F, Wang X L, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 2015, 51(8): 1-6.
    [30] Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation[J]. Optics Express, 2013, 21(13): 15168-15182.
    [31] Yan P, Huang Y S, Sun J Y, et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 2017, 14(8): 080001.
    [32] Yu H L, Zhang H W, Lü H, et al. 315 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J]. Applied Optics, 2015, 54(14): 4556-4560.
    [33] Wang J M, Yan D P,Xiong S S, et al. Mode instability in high power all-fiber amplifier with large-mode-area gain fiber[J]. Optics Communications, 2017, 396: 123-126.
    [34] Wang X L, Tao R M, Yang B L. et al. Experimental study of the relationship between mode instability effect and the stimulated Raman scattering in ytterbium doped all-fiber laser oscillator[J]. Chinese Journal of Lasers, 2018, 45(8): 0801008. 王小林, 陶汝茂, 杨保来, 等. 掺镱全光纤激光振荡器横向模式不稳定与受激拉曼散射的关系[J]. 中国激光, 2018, 45(8): 0801008.
    [35] Su R T, Tao R M, Wang X L, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 2017, 14(8): 085102.
    [36] Tao R M, Su R T, Ma P F, et al. Suppressing mode instabilities by optimizing the fiber coiling methods[J]. Laser Physics Letters, 2017, 14(2): 025101.
    [37] Eznaveh Z S, López-Galmiche G, Antonio-López E, et al. Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers[J]. Proceedings of SPIE, 2015, 9344: 93442G.
    [38] Li T L, Zha C W, Sun Y H, et al. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser[J]. Laser Physics, 2018, 28(10): 105101.
    [39] Li Z B, Huang Z H, Xiang X Y, et al. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 2017, 5(2): 77-81.
    [40] Haarlammert N, de Vries O, Liem A, et al. Build up and decay of mode instability in a high power fiber amplifier[J]. Optics Express, 2012, 20(12): 13274-13283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700