土-隧道结构动力相互作用振动台模型试验中传感器位置的优选
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Sensor Positions in Shaking Table Test for Soil-Tunnel Structure Interactions
  • 作者:王建宁 ; 窦远明 ; 魏明 ; 朱旭曦 ; 段志慧
  • 英文作者:WANG Jian-ning;DOU Yuan-ming;WEI Ming;ZHU Xu-xi;DUAN Zhi-hui;TIAN Gui-zhou;School of Civil and Transportation Engineering,Hebei University of Technology;Research Center on Civil Engineering Technology of Hebei Province;School of Transportation,Nantong University;College of Architecture and Civil Engineering,Beijing University of Technology;
  • 关键词:地下工程 ; 盾构隧道 ; 数值分析 ; 模型试验 ; 传感器
  • 英文关键词:underground engineering;;shield tunnel;;numerical analysis;;shaking table test;;sensors
  • 中文刊名:CJKB
  • 英文刊名:Journal of Yangtze River Scientific Research Institute
  • 机构:河北工业大学土木与交通学院;河北省土木工程技术研究中心;南通大学交通学院;北京工业大学建筑工程学院;
  • 出版日期:2018-08-01 17:07
  • 出版单位:长江科学院院报
  • 年:2019
  • 期:v.36;No.244
  • 基金:国家自然科学基金项目(51008110);; 河北省在读研究生创新项目(CXZZBS2017033)
  • 语种:中文;
  • 页:CJKB201902031
  • 页数:7
  • CN:02
  • ISSN:42-1171/TV
  • 分类号:148-154
摘要
基于有限元-无限元耦合分析模型,对软土地区地铁盾构隧道地震动力响应进行了分析,研究了不同地震动输入条件下地基-盾构隧道体系的加速度反应、位移反应和动应变规律,根据土-结构地震响应影响因素及特点提出了传感器的布置原则,明确了振动台试验中隧道结构的观测面位置及测点处的主要观测指标。结果表明:地基土对地震波的传播具有高频过滤、低频放大作用,地基中的加速度放大系数与埋深和加载波形有关;隧道结构动应力反应在与拱顶、拱底成30°圆心角附近达到最大,是应变量测的重点位置;结构不同高度处的加速度反应和接触土压力不同,沿结构高度布置传感器可量测各点动力差异及变化规律;观测面距离结构端部0.26D(D为结构宽度)处的端部效应可达13.58%,约为观测面距结构端部1D处的3倍,在选择主、辅观测面时应尽量远离结构端部1D。提出的量测方案为开展地铁盾构隧道振动台模型试验数据采集提供了保证,亦可为其他地下结构模型试验测点布置提供参考。
        The seismic responses of metro shield tunnel in soft soil area were analyzed by using finite-infinite element coupled analysis model. The acceleration responses,the displacement responses and the law of dynamic strain of soil-metro shield tunnel system were studied. According to the influential factors and characteristics of soil-metro structure's seismic responses,the layout principle of sensors was summarized,which defined the location of the observation section and the main observation indexes of shield tunnel structure in shaking table test. Results unveiled that the high-frequency component of seismic waves were filtered and the low-frequency component were amplified by foundation soil. The acceleration amplification factor of foundation was related with buried depth and seismic waveform. The maximal seismic stress responses of tunnel structure were located in an angle of 30° to the top and the bottom of tunnel which can be considered as the key points of strain measurement. The acceleration responses and dynamic pressures between structure and soil varied with height,hence the dynamic differences and variations of each point can be measured by arranging sensors at different heights of the structure. At the end of the structure,the end restraint effect on observation section 0.26 D( D represents the structure width) away from the end of the structure reached 13.58%,which is about 3 times that 1 D from the end. Therefore,the main and auxiliary observation sections should be at least 1 D away from the end of the structure. The proposed measurement scheme in this paper guaranteed the data collection in shaking table test of metro shield tunnel and provided a reference for other model tests of underground structures.
引文
[1]AZADI M,HOSSEINI S M M M.Analyses of the Effect of Seismic Behavior of Shallow Tunnels in Liquefiable Grounds[J].Tunnelling and Underground Space Technology,2010,25(5):543-552.
    [2]李积栋,陶连金,安军海,等.近远场地震动作用密贴交叉组合地铁车站振动台试验[J].土木工程学报,2015,48(10):30-37.
    [3]CHNE J,SHI X J,LI J.Shaking Table Test of Utility Tunnel Under Nonuniform Earthquake Wave Excitation[J].Soil Dynamics and Earthquake Engineering,2010,30(11):1400-1416.
    [4]MASOUD R M,MOHAMMAD H B.Seismic Ground Motion Amplification Pattern Induced by a Subway Tunnel:Shaking Table Testing and Numerical Simulation[J].Soil Dynamics and Earthquake Engineering,2016,83:81-97.
    [5]蒋树屏,文栋良,郑升宝.嘎隆拉隧道洞口段地震响应大型振动台模型试验研究[J].岩石力学与工程学报,2011,30(4):649-656.
    [6]CHEN G X,CHEN S,ZUO X,et al.Shaking Table Tests and Numerical Simulations on a Subway Structure in Soft Soil[J].Soil Dynamics and Earthquake Engineering,2015,76:13-28.
    [7]陈国兴,庄海洋,程绍革,等.土-地铁隧道动力相互作用的大型振动台试验:试验方案设计[J].地震工程与工程震动,2006,26(6):178-183.
    [8]王明年,崔光耀.高烈度地区隧道减震模型的建立及其减震效果模型试验研究[J].岩土力学,2010,31(6):1884-1889.
    [9]王建宁,窦远明,田贵州,等.圆形隧道衬砌背后空洞对隧道结构影响的振动台模型试验[J].工业建筑,2017,47(3):118-124+147.
    [10]窦远明,王建宁,田贵州,等.基于正交试验的软弱土质相似材料配比研究[J].铁道科学与工程学报,2017,14(3):480-487.
    [11]刘如山.强地震动作用下地铁结构与土脱开滑移的研究[J].地震工程与工程震动,2004,24(6):136-141.
    [12]周恒松.雅泸高速公路隧道减震模型试验[D].成都:西南交通大学,2008.
    [13]信春雷,高波,周佳媚,等.跨断层隧道设置常规抗减震措施振动台试验研究[J].岩石力学与工程学报,2014,33(10):2047-2056.
    [14]王栋.川藏公路黄草坪2#隧道地震动力响应的三维模型试验研究[D].成都:成都理工大学,2008.
    [15]权登州,王毅红,井彦林,等.黄土地区地铁车站数值模型及测试位置研究[J].震灾防御技术,2015,10(1):108-115.
    [16]刘祥庆,刘晶波,王宗刚.土-结构动力离心模型试验传感器位置的优选[J].清华大学学报(自然科学版),2008,48(6):931-935.
    [17]刘晶波,赵冬冬,张小波,等.地基自由场离心机振动台模型试验研究[J].岩土工程学报,2013,35(5):980-987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700