Ar等离子体处理对GaAs纳米线发光特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Ar Plasma Treatment on Photoluminescence Properties of GaAs Nanowires
  • 作者:高美 ; 李浩林 ; 王登魁 ; 王新伟 ; 方铉 ; 房丹 ; 唐吉龙 ; 王晓华 ; 魏志鹏
  • 英文作者:Gao Mei;Li Haolin;Wang Dengkui;Wang Xinwei;Fang Xuan;Fang Dan;Tang Jilong;Wang Xiaohua;Wei Zhipeng;State Key Laboratory of High Power Semiconductor Laser,Changchun University of Science and Technology;School of Materials Science and Engineering,Changchun University of Science and Technology;
  • 关键词:光谱学 ; GaAs纳米线 ; Ar等离子体处理 ; 光致发光 ; 缺陷 ; 偏压功率
  • 英文关键词:spectroscopy;;GaAs nanowires;;Ar plasma treatment;;photoluminescence;;defects;;bias power
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:长春理工大学高功率半导体激光国家重点实验室;长春理工大学材料科学与工程学院;
  • 出版日期:2018-11-23 10:15
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.506
  • 基金:国家自然科学基金(61474010,61504012,61674021,61704011);; 吉林省科技发展计划(20160519007JH,20170520117JH,20170520118JH,20160204074GX);; 吉林省科技厅重大科技招标专项(20160203015GX);; 国家重点研发计划(2017YFB0402800);; 长春理工大学科技创新基金(XJJLG-2016-11,XJJLG-2016-14)
  • 语种:中文;
  • 页:JJZZ201902038
  • 页数:6
  • CN:02
  • ISSN:31-1339/TN
  • 分类号:282-287
摘要
采用Ar等离子体处理GaAs纳米线,通过光致发光测试研究了等离子体偏压功率对GaAs纳米线发光性能的影响。在不同测试温度和不同激发功率密度下,研究了发光光谱各个发光峰的来源和机制。研究结果表明:随着功率增加,GaAs自由激子发光逐渐消失,束缚激子发光强度先减小后增大;当功率增加到200 W时,出现施主-受主对(DAP)发光。通过对比不同样品在283℃下的发光光谱,得到了等离子体处理过程中GaAs纳米线的结构变化:当处理功率较小时,Ar等离子体在消除表面态的同时将空位缺陷引入GaAs中;当处理功率较大时,GaAs的晶体结构遭到破坏,形成施主类型的缺陷,出现DAP发光。
        GaAs nanowires are treated with Ar plasma, and the effects of the bias power of plasma on the photoluminescence properties of the GaAs nanowires are studied by the photoluminescence test. The source and mechanism of each photoluminescence peak in photoluminescence spectra are studied at different temperatures and different excitation powers. The experimental results show that the free exciton emission of GaAs gradually disappears and the bound exciton emission decreases first and then increases with the increase of the power. When the power increases to 200 W, the donor-acceptor pair(DAP) emission appears. Comparing the photoluminescence spectra of different samples at 283 K, we obtain the structural changes of GaAs nanowires during plasma treatment. When the processing power is low, the Ar plasma eliminates the surface state and introduces a vacancy defect in GaAs; when the processing power is high, the crystal structure of GaAs is destroyed, and the DAP emission appears.
引文
[1] Li X Q. Progress of semiconductor lasers and their applications[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 1997, 20(4): 56-63. 李学千. 半导体激光器的最新进展及其应用[J]. 长春光学精密机械学院学报, 1997, 20(4): 56-63.
    [2] Alekseev P A, Dunaevskiy M S, Ulin V P, et al. Nitride surface passivation of GaAs nanowires: impact on surface state density[J]. Nano Letters, 2015, 15(1): 63-68.
    [3] Tajik N, Chia A C E, LaPierre R R. Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires[J]. Applied Physics Letters, 2012, 100(20): 203122.
    [4] Saxena D, Mokkapati S, Parkinson P, et al. Optically pumped room-temperature GaAs nanowire lasers[J]. Nature Photonics, 2013, 7(12): 963-968.
    [5] Tajik N, Peng Z,Kuyanov P, et al. Sulfur passivation and contact methods for GaAs nanowire solar cells[J]. Nanotechnology, 2011, 22(22): 225402.
    [6] Chang C C, Chi C Y, Yao M Q, et al. Electrical and optical characterization of surface passivation in GaAs nanowires[J]. Nano Letters, 2012, 12(9): 4484-4489.
    [7] Zhou L, Gao X, Wang Y H, et al. Facet passivation of GaAs based LDs by N2 plasma pretreatment and RF sputtered AlxNy film coating[J]. Journal of Lightwave Technology, 2013, 31(13): 2279-2283.
    [8] Kim H S, Park M S, Kim S H, et al. Enhanced open-circuit voltage of InAs/GaAs quantum dot solar cells by hydrogen plasma treatment[J]. Journal of Vacuum Science & Technology B: Nanotechnology and Microelectronics, 2015, 33(4): 041401.
    [9] Watanabe A, Ishikawa F,Kondow M. Effects of plasma processes on the characteristics of optical device structures based on GaAs[J]. Japanese Journal of Applied Physics, 2012, 51(5R): 056501.
    [10] Bosund M, Mattila P, Aierken A, et al. GaAs surface passivation by plasma-enhanced atomic-layer-deposited aluminum nitride[J]. Applied Surface Science, 2010, 256(24): 7434-7437.
    [11] Djie H S, Mei T, Arokiaraj J. Photoluminescence enhancement by inductively coupled argon plasma exposure for quantum-well intermixing[J]. Applied Physics Letters, 2003, 83(1): 60-62.
    [12] Kasanaboina P K, Ahmad E, Li J, et al. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy[J]. Applied Physics Letters, 2015,107(10): 103111.
    [13] Sreekumar R, Mandal A, Chakrabarti S, et al. H- ion implantation induced ten-fold increase of photoluminescence efficiency in single layer InAs/GaAs quantum dots[J]. Journal of Luminescence, 2014, 153: 109-117.
    [14] Djie H S, Arokiaraj J, Mei T, et al. Large blueshift in InGaAs/InGaAsP laser structure using inductively coupled argon plasma-enhanced quantum well intermixing[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2003, 21(4): L1.
    [15] Ge X T, Wang D K, Gao X, et al. Localized states emission in type-I GaAsSb/AlGaAs multiple quantum wells grown by molecular beam epitaxy[J]. Physica Status Solidi-Rapid Research Letters, 2017, 11(3): 1770314.
    [16] Heiss M, Conesa-Boj S, Ren J, et al. Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures[J]. Physical Review B, 2011, 83(4): 045303.
    [17] Hua B, Motohisa J, Kobayashi Y, et al. Single GaAs/GaAsP coaxial core-shell nanowire lasers[J]. Nano Letters, 2009, 9(1): 112-116.
    [18] Ihn S G, Song J I, Kim Y H, et al. Growth of GaAs nanowires on Si substrates using a molecular beam epitaxy[J]. IEEE Transactions on Nanotechnology, 2007, 6(3): 384-389.
    [19] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.
    [20] Varshni Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1): 149-154.
    [21] Falc?o B P, Leit?o J P, González J C, et al. Photoluminescence study of GaAs thin films and nanowires grown on Si (111)[J]. Journal of Materials Science, 2013, 48(4): 1794-1798.
    [22] Kressel H,Dunse J U, Nelson H, et al. Luminescence in silicon-doped GaAs grown by liquid-phase epitaxy[J]. Journal of Applied Physics, 1968, 39(4): 2006-2011.
    [23] Yin Z Y, Tang X H, Lee C W, et al. Argon-plasma-induced InAs/InGaAs/InP quantum dot intermixing[J]. Nanotechnology, 2006, 17(18): 4664-4667.
    [24] Rong T Y, Fang D, Gu L B, et al. Effect of nitrogen passivation on optical properties of Te-doped GaSb[J]. Acta Photonica Sinica, 2018, 47(3): 63-68. 容天宇, 房丹, 谷李彬, 等. 氮钝化对Te掺杂GaSb材料光学性质的影响[J]. 光子学报, 2018, 47(3): 63-68.
    [25] Luckert F, Hamilton D I, Yakushev M V, et al. Optical properties of high quality Cu2ZnSnSe4 thin films[J]. Applied Physics Letters, 2011, 99(6): 062104.
    [26] Arab S, Yao M Q, Zhou C W, et al. Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires[J]. Applied Physics Letters, 2016, 108(18): 182106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700