极低温制冷技术的发展与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and application of ultra-low temperature technology
  • 作者:席肖桐 ; 王珏 ; 郑建朋 ; 郭璐娜 ; 陈六彪 ; 周远 ; 王俊杰
  • 英文作者:Xi Xiaotong;Wang Jue;Zheng Jianpeng;Guo Luna;Chen Liubiao;Zhou Yuan;Wang Junjie;CAS Key Laboratory of Cryogenics,Technical Institude of Physics and Chemistry;University of Chinese Academy of Science;
  • 关键词:极低温技术 ; 绝热去磁制冷 ; 稀释制冷 ; 吸附制冷
  • 英文关键词:Ultra-low temperature technology;;Adiabatic demagnetization refrigerator;;Dilution refrigerator;;Sorption cooler
  • 中文刊名:DWYC
  • 英文刊名:Cryogenics & Superconductivity
  • 机构:中国科学院低温工程学重点实验室中国科学院理化技术研究所;中国科学院大学;
  • 出版日期:2019-06-25 15:48
  • 出版单位:低温与超导
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金(51706233、51427806、U1831203);; 国家重点研发计划项目(2018YFB0504603);; 中国科学院战略性先导科技专项(XDA15010400);中国科学院前沿科学重点研究计划(QYZDY-SSW-JSC028)
  • 语种:中文;
  • 页:DWYC201906001
  • 页数:11
  • CN:06
  • ISSN:34-1059/O4
  • 分类号:4-13+23
摘要
近年来,空间探测和凝聚态物理等领域对极低温制冷技术(<1K)的潜在需求越来越大。本文总结了绝热去磁制冷、稀释制冷与吸附制冷三种目前主要制冷方法的原理与优缺点,回顾了三类制冷技术的发展历程与应用现状,提出了绝热去磁制冷、稀释制冷与吸附制冷技术未来的发展趋势与研究重点。
        In recent years,the potential demand for ultra-low temperature technology(< 1 K) has increased in space detection and condensed matter physics. The principles,advantages and disadvantages of the three main cooling methods of adiabatic demagnetization refrigeration,dilution refrigeration and adsorption refrigeration were summarized. The development history and application status of these three refrigeration technologies were reviewed and the development trend and future research focus were proposed.
引文
[1]Ravera L,Barret D,den Herder J W,et al.The X-ray integral field unit(X-IFU)for Athena[C]//Space Telescopes and Instrumentation 2014:Ultraviolet to Gamma Ray.International Society for Optics and Photonics,2014:9144.
    [2]Fujimoto R,Takei Y,Mitsuda K,et al.Performance of the helium dewar and cryocoolers of ASTRO-H SXS[C]//Space Telescopes and Instrumentation 2016:Ultraviolet to Gamma Ray.International Society for Optics and Photonics,2016:9905.
    [3]Fang T.Missing matter found in the cosmic web[J].Nature,2018,558(7710):375-376.
    [4]Sajadi E,Palomaki T,Fei Z,et al.Gate-induced superconductivity in a monolayer topological insulator[J].Science,2018,362(6417):922-925.
    [5]Pobell F.Matter and methods at low temperatures[M].Berlin:Springer,1996.
    [6]Kelley R L,Mitsuda K,Allen C A,et al.The Suzaku high resolution x-ray spectrometer[J].Publications of the Astronomical Society of Japan,2007,59(sp1):77-112.
    [7]Hoshino A,Yatsu T,Kunihisa T,et al.Development of adiabatic demagnetization refrigerator for X-ray microcalorimeter operation[J].Journal of Low Temperature Physics,2012,167(3-4):554-560.
    [8]Shirron P J.Applications of the magnetocaloric effect in single-stage,multi-stage and continuous adiabatic demagnetization refrigerators[J].Cryogenics,2014,62:130-139.
    [9]Hagmann C,Richards P L.Two-stage magnetic refrigerator for astronomical applications with reservoir temperatures above 4 K[J].Cryogenics,1994,34(3):221-226.
    [10]Bartlett J,Hardy G,Hepburn I D,et al.Improved performance of an engineering model cryogen free double adiabatic demagnetization refrigerator[J].Cryogenics,2010,50(9):582-590.
    [11]Shirron P,Kimball M,Wegel D,et al.ADR design for the soft X-ray spectrometer instrument on the Astro-H mission[J].Cryogenics,2010,50(9):494-499.
    [12]Shirron P J,Canavan E R,Dipirro M J,et al.A multi-stage continuous-duty adiabatic demagnetization refrigerator[M]Boston:Springer,2000:1629-1638.
    [13]Whitehouse P L,Shirron P J,Kelley R L.The X-ray microcalorimeter spectrometer(XMS):a reference cryogenic instrument for Constellation-X[J].Cryogenics,2004,44(6-8):543-549.
    [14]Shirron P J,Kimball M O,Fixsen D J,et al.Design of the PIXIE adiabatic demagnetization refrigerators[J].Cryogenics,2012,52(4-6):140-144.
    [15]阎守胜.稀释制冷-一种获得极低温度的新方法[J].物理,1975,4(2):111-114.
    [16]Sawano M,Igarashi T,Karaki Y,et al.Development of a transportable dilution refrigerator with cryogenic3He J-T circulating system[J].Cryogenics,1990,30:447-451.
    [17]Triqueneaux S,Sentis L,Camus P,et al.Design and performance of the dilution cooler system for the Planck mission[J].Cryogenics,2006,46(4):288-297.
    [18]Uhlig K,Hehn W.3He/4He dilution refrigerator precooled by Gifford-Mcmahon refrigerator[J].Cryogenics,1997,37(5):279-282.
    [19]Yamanaka Y,Ito T,Umeno T,et al.Development of G-M cryocooler separate type liquid-helium-free3He-4He dilution refrigerator system[C]//Journal of Physics:Conference Series.IOP Publishing,2009,150(1):012055.
    [20]Uhlig K.3He/4He dilution refrigerator precooled by Gifford-Mcmahon cooler II.Measurements of the vibrational heat leak[J].Cryogenics,2002,42(9):569-575.
    [21]Umeno T,Kamioka Y,Yoshida S,et al.Performance of compact liquid helium free3He-4He dilution refrigerator directly coupled with G-M cooler in TES microcalorimeter operation[C]//Journal of Physics:Conference Series.IOP Publishing,2009,150(1):012051.
    [22]Maehata K,Hara T,Ito T,et al.A dry3He-4He dilution refrigerator for a transition edge sensor microcalorimeter spectrometer system mounted on a transmission electron microscope[J].Cryogenics,2014,61:86-91.
    [23]Uhlig K.3He/4He dilution refrigerator with pulse-tube refrigerator precooling[J].Cryogenics,2002,42(2):73-77.
    [24]Barucci M,Martelli V,Ventura G.Adry dilution refrigerator for the test of CUORE components[J].Journal of Low Temperature Physics,2009,157(5-6):541.
    [25]Duband L,Clerc L,Ercolani E,et al.Herschel flight models sorption coolers[J].Cryogenics,2008,48(3-4):95-105.
    [26]Nolt I G,Martin T Z.Anadsorption pumped3He cooled ir detector[J].Review of Scientific Instruments,1971,42(7):1031-1033.
    [27]Torre J P,Chanin G.Miniature liquid3He refrigerator[J].Review of Scientific Instruments,1985,56(2):318-320.
    [28]De Bernardis P,Aquilini E,Boscaleri A,et al.AR-GO:a balloon-borne telescope for measurements of the millimeter diffuse sky emission[J].Astronomy and Astrophysics,1993,271:683
    [29]Cheng E S,Meyer S S,Page L A.A high capacity0.23 K3He refrigerator for balloon‐borne payloads[J].Review of scientific instruments,1996,67(11):4008-4016.
    [30]Freund M M,Duband L,Lange A E,et al.Design and flight performance of a space borne3He refrigerator for the infrared telescope in space[J].Cryogenics,1998,38(4):435-443.
    [31]Verveer J,Rando N,Andersson S,et al.Design and performance of a portable3He cryogenic system for ground based instrumentation[J].Review of scientific instruments,1999,70(10):4088-4096.
    [32]Pan S H,Hudson E W,Davis J C.3He refrigerator based very low temperature scanning tunneling microscope[J].Review of Scientific Instruments,1999,70(2):1459-1463.
    [33]Bhatia R S,Bock J J,Hristov V V,et al.Closed-cycle cooling of infrared detectors to 0.25 K for the polatron[A]//Cryocoolers 11[M].Boston:Springer,2002:577-586.
    [34]Duband L,Clerc L,Ravex A.Socool:A 300 K~0.3K pulse tube/sorption cooler[C]//AIP Conference Proceedings.AIP,2002,613(1):1233-1240.
    [35]Devlin M J,Dicker S R,Klein J,et al.A high capacity completely closed-cycle 250 m K3He refrigeration system based on a pulse tube cooler[J].Cryogenics,2004,44(9):611-616.
    [36]Liubiao C,Xianlin W,Xuming L,et al.Numerical and experimental study on the characteristics of 4 K gas-coupled Stirling-type pulse tube cryocooler[J].International Journal of Refrigeration,2018,88:204-210.
    [37]Chen L,Wu X,Wang J,et al.Study on a high frequency pulse tube cryocooler capable of achieving temperatures below 4 K by helium-4[J].Cryogenics,2018,94:103-109.
    [38]Pan C,Wang J,Luo K,et al.Progress on a novel VM-type pulse tube cryocooler for 4 K[J].Cryogenics,2017,88:66-69.
    [39]Wang J,Pan C,Zhang T,et al.A novel method to hit the limit temperature of Stirling-type cryocooler[J].Journal of Applied Physics,2018,123(6):063901.
    [40]Luchier N,Duval J M,Duband L,et al.Performances of the 50 m K ADR/sorption cooler[J].Cryogenics,2012,52(4-6):152-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700