改进扩大型焊接孔梁柱节点子结构动态抗倒塌性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental and numerical study on dynamic collapse resistance of steel beam-column connections with enlarged weld access holes
  • 作者:陈英 ; 霍静思 ; 王海涛
  • 英文作者:CHEN Ying;HUO Jingsi;WANG Haitao;Key Laboratory of Building Safety and Energy Efficiency of China Ministry of Education,Hunan University;College of Civil Engineering, Huaqiao University;
  • 关键词:梁柱节点子结构 ; 扩大型焊接孔 ; 冲击试验 ; 悬链线效应 ; 抗倒塌能力
  • 英文关键词:beam-column connection substructure;;improved enlarged weld access hole;;impact test;;catenary action;;collapse resistance
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:湖南大学建筑安全与节能教育部重点实验室;华侨大学土木工程学院;
  • 出版日期:2018-12-17 17:03
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51078139);; 教育部新世纪优秀人才计划项目(NCET-11-0123)
  • 语种:中文;
  • 页:JZJB201903024
  • 页数:10
  • CN:03
  • ISSN:11-1931/TU
  • 分类号:234-243
摘要
对试验中采用改进扩大型焊接孔的2个钢结构全焊接梁柱节点分别施加静力荷载和落锤冲击作用,以模拟得到子结构的静、动态倒塌响应,考察静态和动态两种不同加载方式对此类梁柱节点抗倒塌性能的影响。通过试验获得节点的破坏模式及其冲击作用和位移时程曲线等,分析冲击过程中静、动态响应规律以及节点转动能力。试验结果表明:改进扩大型焊接孔构造的节点,其主要破坏形态是钢梁上翼缘屈曲,下翼缘纵向塑性拉伸大变形以及沿焊接孔边缘的开裂等。另外,改进后的焊接孔构造对节点转动性能的影响显著; 2个节点均具有良好的转动性能,其最大转角远超过FEMA 351标准抗倒塌设计的转角限值(θ=0.064 rad)要求。对比以往研究成果,给出了冲击作用下刚性节点的归一化冲击能与转角拟合公式。采用ABAQUS软件建立了扩大型焊接孔构造节点的有限元分析模型,通过不同加载时刻子结构内力分布情况可知,冲击加载初期的局部响应对节点子结构的整体响应影响可忽略,表明采用落锤冲击加载方法研究结构抗倒塌具有可行性;通过分析节点在冲击作用下内力发展规律可知,改进扩大型焊接孔构造节点良好的转动性能有利于悬链线的形成。
        Two steel beam-column connections with improved enlarged weld access holes were designed and tested, and both static and dynamic collapse behavior of the fully welded connections were considered and investigated under static load and drop-hammer impact force. The fundamental behavior and rotational capacities of the connections under both static and dynamic loads were analyzed by examining the failure modes and time histories of the impact force and deformation of the specimens. The test results show that the failure modes of the steel beam-column connections mainly include buckling of the top flange of the beam, longitudinal plastic tensile deformation of the bottom flange, as well as crack along the edge of the weld access hole. Additionally, the details of the weld access hole have a significant effect on the rotational capacity of the connection. Both connections have good rotational capacity and their maximum rotations are much larger than the design limit of FEMA 351(θ=0.064 rad). A fitting formula describing the relationships between the normalized impact energy and connection rotation was proposed by summarizing the test results in previous and present studies. A finite element(FE) model of the steel beam-column connection with enlarged weld access holes was established using ABAQUS. The distributions of the internal forces of the connection at different impact loading stages show that the local response of the connection at the initial loading stage has no influence on the overall response at later stage, indicating the feasibility of using drop-hammer impact loading for studying the structural anti-collapse behavior. Furthermore, the development of the internal force of the connection under impact loading demonstrates that the good rotational capacity of the steel beam-column connection with improved enlarged weld access holes contributes to the formation of the catenary action.
引文
[1] General Service Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects: GSA 2003[S]. Washington DC: General Service Administration, 2003.
    [2] Department of Defense. Design of buildings to resist progressive collapse: UFC4- 023- 03[S]. Washington DC: Department of Defense, 2005.
    [3] 建筑结构抗倒塌设计规范: CECS 392:2014[S]. 北京:中国计划出版社,2014. (Code for anti-collapse design of building structures: CECS 392:2014[S]. Beijing: China Planning Press, 2014.(in Chinese))
    [4] LI L, WANG W, CHEN Y Y, TEH L H. Column-wall failure mode of steel moment connection with inner diaphragm and catenary mechanism[J]. Engineering Structures, 2017, 131: 553-563.
    [5] YANG B, TAN K H. Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario[J]. Engineering Structures, 2013, 54: 112-130.
    [6] YANG B, TAN K H. Numerical analyses of steel beam-column joints subjected to catenary action[J]. Journal of Constructional Steel Research, 2012, 70: 1-11.
    [7] DANESHVAR H, DRIVER R G. Behaviour of shear tab connections in column removal scenario[J]. Journal of Constructional Steel Research, 2017, 138: 580-593.
    [8] YI W J, HE Q F, XIAO Y, KUNNATH S K. Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures[J]. ACI Structural Journal, 2008, 105(4): 433- 439.
    [9] DINU F, MARGINEAN I, DUBINA D, PETRAN I. Experimental testing and numerical analysis of 3D steel frame system under column loss[J]. Engineering Structures, 2016, 113: 59-70.
    [10] LIU C, FUNG T C, TAN K H. Dynamic performance of flush end-plate beam-column connections and design applications in progressive collapse[J]. Journal of Structural Engineering, 2016, 142(1): 04015074.
    [11] LI L L, LI G Q, JIANG B H, LU Y. Analysis of robustness of steel frames against progressive collapse[J]. Journal of Constructional Steel Research, 2018, 143: 264-278.
    [12] XIAO Y, KUNNATH S K, LI W F, ZHAO Y B, LEW H S, BAO Y. Collapse test of three-story half-scale reinforced concrete frame building[J]. ACI Structural Journal, 2015, 112(4): 429- 438.
    [13] 霍静思, 王海涛, 王宁,张素青. 钢框架加强型梁柱节点子结构的抗冲击性能试验研究[J]. 建筑结构学报, 2016, 37(6): 131-140.(HUO Jingsi, WANG Haitao, WANG Ning, ZHANG Suqing. Experimental study on impact behavior of strengthened beam-column connections of steel frames[J]. Journal of Building Structures, 2016, 37(6): 131-140. (in Chinese))
    [14] HUO J, ZHANG J, LIU Y, FU F. Dynamic behaviour and catenary action of axially-restrained steel beam under impact loading[J]. Structures,2017,11:84-96.
    [15] National Institute of Standards and Technology (NIST). An experimental and computational study of steel moment connections under a column removal scenario: NIST Technical Note 1669[R]. Gaithersburg, Maryland: Department of Commerce, 2010.
    [16] LI L, WANG W, CHEN Y, LU Y. Effect of beam web bolt arrangement on catenary behaviour of moment connections[J]. Journal of Constructional Steel Research, 2015, 104: 22-36.
    [17] LU L W, RICLES J M, MAO C, FISHER J W. Critical issues in achieving ductile behaviour of welded moment connections[J]. Journal of Constructional Steel Research, 2000, 55(1/2/3): 325-341.
    [18] EL-TAWIL S, MIKESELL T, KUNNATH S K. Effect of local details and yield ratio on behavior of FR steel connections[J]. Journal of Structural Engineering, 2000, 126(1): 79-87.
    [19] 霍静思, 王宁, 陈英. 钢框架焊接梁柱子结构的抗倒塌性能试验研究[J]. 建筑结构学报, 2014, 35(4): 100-108.(HUO Jingsi, WANG Ning, CHEN Ying. Experimental study on collapse resistance of welded beam-column substructure of steel frame based on seismic design[J]. Journal of Building Structures, 2014, 35(4): 100-108.(in Chinese))
    [20] 于征, 李军, 扩大型工艺孔切角几何尺寸的合理选择[J]. 钢结构, 2011, 26(3): 38- 41.(YU Zheng, LI Jun. Reasonable size choices for expanded scallop of welded hole[J]. Steel Structures, 2011, 26(3): 38- 41.(in Chinese))
    [21] HUO J, WANG H, ZHU Z, LIU Y, ZHONG Q. Experimental study on impact behavior of stud shear connectors between concrete slab and steel beam[J]. Journal of Structural Engineering, 2018, 144(2): 04017203.
    [22] STOJADINOVI B, GOEL S C, LEE K H, MARGARIAN A G, CHOI J H. Parametric tests on unreinforced steel moment connections[J]. Journal of Structural Engineering, 2000, 126(1):40- 49.
    [23] WANG W, FANG C, QIN X, CHEN Y, LI L. Performance of practical beam-to-SHS column connections against progressive collapse[J]. Engineering Structures, 2016, 106:332-347.
    [24] 陈俊岭, 舒文雅, 李金威. Q235钢材在不同应变率下力学性能的试验研究[J]. 同济大学学报(自然科学版), 2016, 44(7):1071-1075.(CHEN Junling, SHU Wenya, LI Jinwei. Experimental study on dynamic mechanical property of Q235 steel at different strain rates[J]. Journal of Tongji University (Natural Science), 2016, 44(7):1071-1075.(in Chinese))
    [25] CHEN J, SHU W, LI J. Constitutive model of Q345 steel at different intermediate strain rates[J]. International Journal of Steel Structures, 2017, 17(1):127-137.
    [26] Federal Emergency Management Agency.Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings: FEMA 351[S]. Washington DC: Federal Emergency Management Agency, 2000.
    [27] 张素清. 钢框架改进型梁柱节点子结构抗冲击性能研究[D]. 长沙:湖南大学, 2014: 11-30.(ZHANG Suqing. Research on the impact resistance behavior of improved sub node of steel frames[D]. Changsha: Hunan University, 2014: 11-30.
    [28] IZZUDDIN B A. A simplified model for axially restrained beams subject to extreme loading[J]. International Journal of Steel Structures, 2005, 5(5): 421- 429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700