水平管道空间煤尘爆炸火焰传播特性数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of flame propagation characteristics of coal-dust explosion in horizontal pipeline space
  • 作者:刘天奇
  • 英文作者:LIU Tianqi;School of Safety Engineering,Shenyang Aerospace University;
  • 关键词:煤尘爆炸 ; 煤尘爆炸强度 ; 爆炸火焰传播 ; 火焰传播特性 ; 火焰传播距离 ; 火焰温度传播特性 ; 水平管道空间 ; 数值模拟
  • 英文关键词:coal-dust explosion;;coal-dust explosion intensity;;explosion flame propagation;;flame propagation characteristic;;flame propagation distance;;flame temperature propagation characteristic;;horizontal pipeline space;;numerical simulation
  • 中文刊名:MKZD
  • 英文刊名:Industry and Mine Automation
  • 机构:沈阳航空航天大学安全工程学院;
  • 出版日期:2019-07-15
  • 出版单位:工矿自动化
  • 年:2019
  • 期:v.45;No.280
  • 基金:国家自然科学基金资助项目(51774168,51675133);; 沈阳航空航天大学引进人才博士科研启动基金资助项目(18YB25)
  • 语种:中文;
  • 页:MKZD201907012
  • 页数:7
  • CN:07
  • ISSN:32-1627/TP
  • 分类号:62-68
摘要
为研究水平管道空间煤尘爆炸火焰传播特性,以水平玻璃管道煤尘爆炸实验装置为依托,以褐煤为研究对象,构建了煤尘爆炸火焰传播特性数学模型和水平管道几何模型,采用数值模拟方法研究了水平管道空间煤尘爆炸不同时刻沿水平管道长度方向(z方向)火焰传播特性、爆炸反应充分时沿z方向火焰温度传播特性及不同截面火焰温度传播特性。研究结果表明:①不同时刻爆炸火焰传播距离模拟值与实测值最大误差为0.09m,最小误差为0.01m,验证了数值模拟方法的可行性。②煤尘爆炸反应充分时,水平管道空间可划分为初始扬尘区z=0~0.1m、高温点火区z=0.1~0.3m、温度跃升区z=0.3~0.56m、高温核心区z=0.56~0.86m和高温扩散区z=0.86~1.4m。③煤尘爆炸反应充分时,z=0.2m处截面上,距圆心越近则温度越低,说明该区域虽为爆源,但不是爆炸热量释放核心区;z=0.2,0.4m处截面最外围近壁区域存在约500K窄环形低温区,这是由于管壁设置温度恒为常温300K所致;z=0.86~1.4m处截面上,距圆心越近则温度越高,截面距高温核心区越远则温度越低。数值模拟结果与火焰实际传播情况相符。
        In order to research flame propagation characteristics of coal-dust explosion in horizontal pipeline space,based on coal-dust explosion experimental equipment with horizontal glass pipeline,mathematical models of flame propagation characteristics of coal-dust explosion and geometry model of horizontal pipeline were constructed taking lignite as research object,and numerical simulation method was used to research flame propagation characteristics of coal-dust explosion along pipeline length direction(z direction)in horizontal pipeline space at different time and flame temperature propagation characteristics along z direction and in different cross-sections when explosion reaction was sufficient.The research results show:① The maximum error between simulated value of explosion flame propagation distance and the measured one is 0.09 mat different time,and the minimum error is 0.01 m,which verifies feasibility of the numerical simulation method.② When coal-dust explosion reaction is sufficient,the horizontal pipeline space can be divided into initial dusting zone of z=0-0.1 m,high temperature ignition zone of z=0.1-0.3 m,temperature jump zone of z=0.3-0.56 m,high temperature core zone of z=0.56-0.86 mand high temperature diffusion zone of z=0.86-1.4 m.③When coal-dust explosion reaction is sufficient,in cross-section at z=0.2 m,the closer the location is to circle center,the lower the temperature at the location is,which indicates that the region is explosion source,but it is not core area of explosive heat release.There are narrow annular low temperature zones of about 500 Kin the outermost peripheral wall region of cross-sections at z=0.2 mand z=0.4 m,which are due to constant pipeline wall temperature of300 K.In cross-section at z=0.86-1.4 m,the closer the location is to circle center,the higher the temperature at the location is,and the farther the cross-section is away from high temperature core zone,the lower temperature is.The numerical simulation results are consistent with actual flame propagation.
引文
[1]金龙哲.矿井粉尘防治理论[M].北京:科学出版社,2010.
    [2]王连聪,梁运涛,罗海珠.我国矿井热动力灾害理论研究进展与展望[J].煤炭科学技术,2018,46(7):1-9.WANG Liancong,LIANG Yuntao,LUO Haizhu.Research progress and outlook on theory of thermodynamic disaster of coal mine in China[J].Coal Science and Technology,2018,46(7):1-9.
    [3]王德明.煤矿热动力灾害及特性[J].煤炭学报,2018,43(1):137-142.WANG Deming.Thermodynamic disaster in coal mine and its characteristics[J].Journal of China Coal Society,2018,43(1):137-142.
    [4]ECKHOFF R K.Understanding dust explosions.The role of powder science and technology[J].Journal of Loss Prevention in the Process Industries,2009,22(1):105-116.
    [5]HOUIM R W,ORAN E S.Structure and flame speed of dilute and dense layered coal-dust explosions[J].Journal of Loss Prevention in the Process Industries,2015,36(4):214-222.
    [6]刘丹,司荣军.冲击气流诱导对沉积煤尘参与瓦斯爆炸的试验研究[J].煤炭科学技术,2014,42(11):46-49.LIU Dan,SI Rongjun.Experimental study on gas explosion with deposited coal dust induced by impact flow[J].Coal Science and Technology,2014,42(11):46-49.
    [7]蔡周全,罗振敏,程方明.瓦斯煤尘爆炸传播特性的实验研究[J].煤炭学报,2009,34(7):938-941.CAI Zhouquan,LUO Zhenmin,CHENG Fangming.Experimental study on propagation characteristics of gas/coal dust explosion[J].Journal of China Coal Society,2009,34(7):938-941.
    [8]刘贞堂.瓦斯煤尘爆炸物证特性参数实验研究[D].徐州:中国矿业大学,2010.
    [9]刘贞堂,张松山,喜润泽,等.受限空间煤尘爆炸残留气体特征分析[J].煤炭学报,2015,40(7):1574-1579.LIU Zhentang,ZHANG Songshan,XI Runze,et al.Analysis on residual gas characteristics of coal dust explosion in confined space[J].Journal of China Coal Society,2015,40(7):1574-1579.
    [10]李海涛,陈晓坤,邓军,等.湍流状态下竖直管道内甲烷-煤尘预混特征及爆炸过程数值模拟[J].煤炭学报,2018,43(6):1769-1779.LI Haitao,CHEN Xiaokun,DENG Jun,et al.Numerical simulation on the premix properties and explosion process of methane/coal dust mixture in a vertical pipeline under turbulent flow[J].Journal of China Coal Society,2018,43(6):1769-1779.
    [11]曹卫国,徐森,梁济元,等.煤粉尘爆炸过程中火焰的传播特性[J].爆炸与冲击,2014,34(5):586-593.CAO Weiguo,XU Sen,LIANG Jiyuan,et al.Characteristics of flame propagation during coal dust cloud explosion[J].Explosion and Shock Waves,2014,34(5):586-593.
    [12]程磊.受限空间煤尘爆炸冲击波传播衰减规律研究[D].焦作:河南理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700