水下激光脉冲时延特性的仿真分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation and Analysis of Time Delay Characteristics of Underwater Laser Pulse
  • 作者:李天松 ; 阳荣凯 ; 黄艳虎 ; 马力
  • 英文作者:Li Tiansong;Yang Rongkai;Huang Yanhu;Ma Li;Institute of Information and Communication,Guilin University of Electronic Technology;Guangxi Key Laboratory of Precision Navigation Technology and Application;
  • 关键词:海洋光学 ; 水下无线光通信 ; 激光脉冲时延 ; 蒙特卡罗法 ; 海洋信道
  • 英文关键词:ocean optics;;underwater wireless optical communication;;time delay of laser pulse;;Monte Carlo method;;ocean channel
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:桂林电子科技大学信息与通信学院;广西精密导航技术与应用重点实验室;
  • 出版日期:2019-03-08 17:05
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.646
  • 基金:国家自然科学基金(61561014);; 广西精密导航技术与应用重点实验室(DH201709);; 桂林电子科技大学研究生科研创新项目(2017YJCX33)
  • 语种:中文;
  • 页:JGDJ201911007
  • 页数:9
  • CN:11
  • ISSN:31-1690/TN
  • 分类号:64-72
摘要
利用蒙特卡罗数值模拟方法研究了海水散射引起的激光脉冲时延效应,分析了海水类型、传输距离、收发器参数等对激光脉冲时延的影响。数值仿真结果表明,在清澈海域,激光脉冲的时延展宽随传输距离的增加变化不明显,且在传输距离小于50m时,信道时延小于0.5ns,收发器参数对信道时延的影响小;而在浑浊海域,信道散射引起的多径效应会使接收功率随接收孔径的增大而升高,信道时延也会随之增大。当接收视场角小于90°时,其对接收功率和时延展宽的影响大;当视场角为90°~180°时,其对接收功率和时延展宽的影响小。
        Herein,the effect of laser pulse time delay induced by seawater scattering is studied using the Monte Carlo numerical simulation method.Further,we analyze the effects of seawater types,transmission distance,and transceiver parameters on laser pulse time delay.The numerical simulation results indicate that in clear seas,the laser pulse time delay broadening does not obviously change with the increase of transmission distance.Furthermore,when the transmission distance is less than 50 m,the channel time delay is smaller than 0.5 ns,indicating the transceiver parameters exhibit only small impact on the channel delay.However,in turbid seas,the receiving power and the channel time delay increase with the increase of receiving aperture under the multipath effect induced by channel scattering.When the receiving angular field of view(AFOV)is less than 90°,its influence on the receiving power and the time delay broadening is observed to be significant.However,when the AFOV is between 90°and 180°,the receiving power and the time delay broadening demonstrate no obvious changes with AFOV.
引文
[1]Zhang Y L,Wang Y M,Huang A P.Influence of suspended particles based on Mie theory on underwater laser transmission[J].Chinese Journal of Lasers,2018,45(5):0505002.张莹珞,王英民,黄爱萍.米氏理论下悬浮粒子对水下激光传输的影响[J].中国激光,2018,45(5):0505002.
    [2]Tang S J,Dong Y H,Zhang X D.Impulse response modeling for underwater wireless optical communication links[J].IEEE Transactions on Communications,2014,62(1):226-234.
    [3]Sang V Q,Feng P,Tang B,et al.Study on properties of light scattering based on Mie scattering theory for suspended particles in water[J].Laser&Optoelectronics Progress,2015,52(1):013001.Vo Quang Sang,冯鹏,汤斌,等.基于米氏散射理论的水中悬浮颗粒物散射特性计算[J].激光与光电子学进展,2015,52(1):013001.
    [4]He X S,Zhu X,Tan X S,et al.Research on the transmission delay of laser pulse caused by the sea water scattering effects[J].Laser&Infrared,2001,31(1):19-21.贺细顺,朱晓,谭雪松,等.海水散射引起激光脉冲传输延迟的研究[J].激光与红外,2001,31(1):19-21.
    [5]Stotts L B.Closed form expression for optical pulse broadening in multiple-scattering media[J].Applied Optics,1978,17(4):504-505.
    [6]Zhou Y M,Liu Q Z,Zhang X H,et al.An efficient method for simulating time-domain broadening of laser pulse propagating underwater[J].Chinese Journal of Lasers,2009,36(1):143-147.周亚民,刘启忠,张晓晖,等.一种激光脉冲水下传输时域展宽模拟计算方法[J].中国激光,2009,36(1):143-147.
    [7]Liang B,Zhu H,Chen W B.Simulation of laser communication channel from atmosphere to ocean[J].Acta Optica Sinica,2007,27(7):1166-1172.梁波,朱海,陈卫标.大气到海洋激光通信信道仿真[J].光学学报,2007,27(7):1166-1172.
    [8]Zhou L J,Zhou D,Zeng W B.Simulation analysis of undersea wireless optical communication system based on flat-topped beam[J].Laser&Optoelectronics Progress,2018,55(7):070603.周龙杰,周东,曾文兵.基于平顶光束的水下无线光通信系统的仿真分析[J].激光与光电子学进展,2018,55(7):070603.
    [9]Cox W C.Simulation,modeling,and design of underwater optical communication systems[J].Dissertations&Theses-Gradworks,2012,34(9):930-942.
    [10]Petzold T J.Volume scattering functions for selected ocean waters[R].San Diego,CA:Scripps Institution of Oceanography,1972(3):72-78.
    [11]Huang A P,Tao L W.Monte Carlo based channel characteristics for underwater optical wireless communications[J].IEICE Transactions on Communications,2017,E100.B(4):612-618.
    [12]Liu N,Ke J Y,Yang S H,et al.Simulation and analysis on underwater transmission characteristics of Gaussian pulse lasers with carrier modulation[J].Acta Optica Sinica,2018,38(4):0401003.刘娜,柯杰耀,杨苏辉,等.载波调制高斯脉冲激光水下传输特性的仿真分析[J].光学学报,2018,38(4):0401003.
    [13]Sahu S K,Shanmugam P.A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J].Optics Communications,2018,408:3-14.
    [14]Mobley C D.Light and water:radiative transfer in natural waters[M].New York:Academic Press,1994.
    [15]Cox W,Muth J.Simulating channel losses in an underwater optical communication system[J].Journal of the Optical Society of America A,2014,31(5):920-934.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700